Q1 (5 points). For the system of figure (1-a) with $R = 96 \Omega$, $C = 1562.5 \mu F$ and L = 10 H.

- a. Derive the transfer function of each block.
- b. Find the overall transfer function of the system.
- c. If the amplifier gain (A) is equal to 4 and the response of the system to a unit step is given in figure (1-b), and $R_2 = (150 - R_1) \Omega$, find the values of R_1 and R_2 .
- d. Find ω_n the undamped natural frequency of the overall circuit and ξ the damping ratio of the overall circuit.

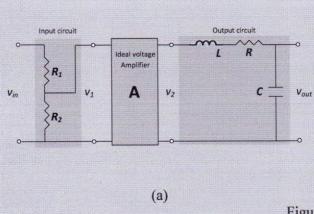
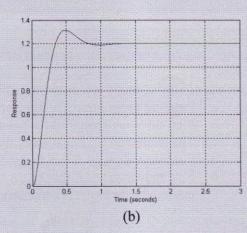


Figure (1)



Q2 (4 points). For the control system shown in the block diagram of figure (2):

- a- What is the time constant of the process.
- b- If the transfer function of the controller is

$$G_C(s) = \frac{K_I}{s}$$
 and $U(s) = \frac{1}{s}$, find the values of K_I to

have a peak time $t_p = 2 \sec$ and a maximum overshoot $M_P = 15\%$.

- c- What is the time constant of the overall system.
- d- Find the transfer function that relates the output signal to the load L(s).

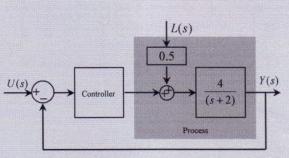


Figure (2)

Q3 (5 points). Consider the system described by the block diagram of figure (3) with $G(s) = \frac{1}{s^2 + 2s + 7}$ and H(s) = 2.

- (a) Find the overall transfer function of this system.
- (b) If the input function is a unit step function, find:
 - the rise time of the response signal.
 - the peak time of the response signal.
 - the maximum overshoot of the response signal
 - the setting time for an allowable tolerance of 5%
 - draw approximately the response of the system.

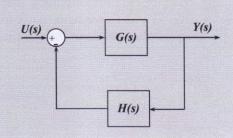


Figure (3)

Q4 (3 points). For the system described by the block diagram of figure (4) find the overall all transfer function that relates the output signal C(s) to the input signal R(s).

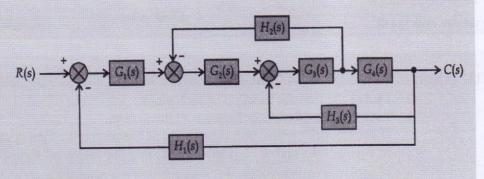
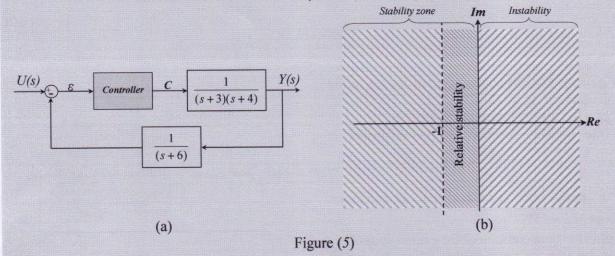


Figure (4)

Q5 (8 points (6+2)). For the control system of figure (5-a):

- 1. If the control strategy is a proportional control with an amplification term K.
 - a. Find the overall transfer function of the system.
 - b. Find the open-loop transfer function of the system.
 - c. The characteristic equation of the system.
 - d. Find the values of K that keeps this control system stable.
 - e. Find the values of K that keeps the roots of the characteristic equation of this system at the left hand side of the relative stability zone (refer to figure (5-b)).



2. If we want to use the PID controller schematized in figure (δ). Using the Ziegler-Nicholas methods, what values of K_C , T_I and T_D we have to use to obtain an optimal response of the system.

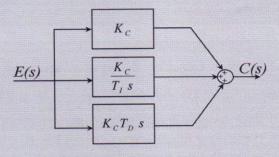


Figure (6)

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{1+\tau s}$$

$$\blacksquare$$
 General form of the second order system: $G(s) = \frac{Y(s)}{U(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{1}{\tau^2 s^2 + 2\xi\tau s + 1}$

$$\frac{\omega_n^2}{+2\xi\omega_n s + \omega_n^2} = \frac{1}{\tau^2 s^2 + 2\xi\tau s + 1}$$

Where ζ : is the system damping ratio,

 $\omega_n = (1/\tau)$: is the system undamped natural frequency.

 \square The underdamped response case (for $\zeta < 1$) of the second order system to a unit step response can be characterized by:

1-Delay time (t_d) . Is defined as the time required for the response to reach 50% from its ultimate

2-Rise time (t_r) . The time required for the response to first reach its ultimate value

$$t_r = \frac{\pi - \beta}{\omega_d}$$
 with $\beta = \tan^{-1} \left(\frac{\omega_d}{\xi \omega_n} \right)$ and $\omega_d = \omega_n \sqrt{1 - \xi^2}$

3-Peak time (t_p) . The time required for the response to reach its peak $t_p = \frac{\pi}{\omega_p}$

4-Setting time
$$(t_s)$$
: If the allowable tolerance is (2%) \Rightarrow $t_s = \frac{4}{\xi \omega_n}$

If the allowable tolerance is (5%) \Rightarrow $t_s = \frac{3}{\xi \omega_n}$

5- Maximum overshoot (M_p) . Is the measure of how much the response exceeds the ultimate value

following a step input
$$M_p = e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$$

☑ PID controller Parameters (stability limits evaluation.)

Type of controller	Optimum gain
P	$K=0.5K_u$
PI	$K=0.45K_u$ $T_I=P_u/1.2$
PID	$K=0.6K_u$ $T_I=0.5P_u$ $T_D=P_u/8$

☑ Dynamic of basic electrical components:

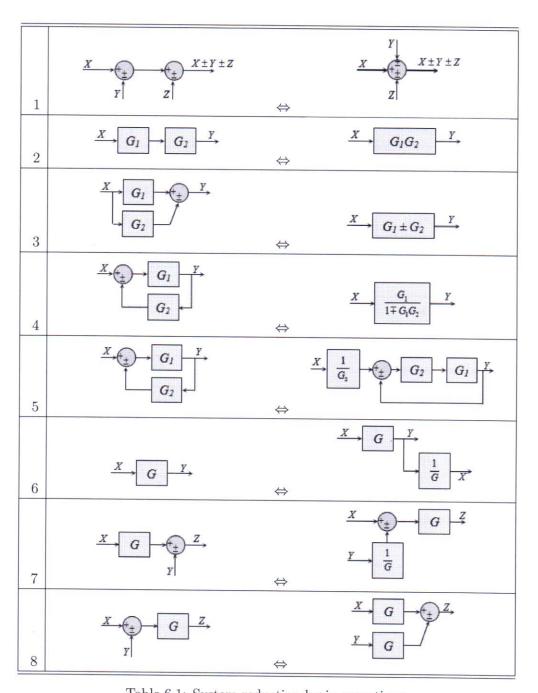


Table 6.1: System reduction basic operations.

Function	Time domain	Laplace domain
Unit step function	$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$	$U(s) = \frac{1}{s}$
Step function	f(t) = Ku(t)	$F(s) = \frac{K}{s}$
Ramp function	f(t) = tu(t)	$F(s) = \frac{1}{s^2}$
Ramp function	$f(t) = t^2 u(t)$	$F(s) = \frac{2}{s^3}$
Ramp function	$f(t) = t^n u(t)$	$F(s) = \frac{n!}{s^{n+1}}$
Pulse function	$f(t) = K(u(t) - u(t - t_1))$	$F(s) = \frac{K}{s}(1 - e^{-st_1})$
Impulse function	$\delta(t)$	$\Delta(s) = 1$
Exponential function	$f(t) = Ke^{-at} \ u(t)$	$F(s) = \frac{K}{(s+a)}$
Sine function	$f(t) = A \sin(\omega t) \ u(t)$	$F(s) = \frac{A\omega}{s^2 + \omega^2}$
Cosine function	$f(t) = A \cos(\omega t) \ u(t)$	$F(s) = \frac{As}{s^2 + \omega^2}$
First derivative	$\dot{f}(t)$	sF(s) - f(0)
Second derivative	$\ddot{f}(t)$	$s^2F(s) - sf(0) - \dot{f}(0)$
n^{th} derivative	$f^n(t)$	$s^n F(s) - \sum_{k=1}^n s^{k-1} f^{(n-k)}(0)$
Integration	$\int_0^t f(\tau)d\tau$	$\frac{1}{s}F(s)$
Convolution product	$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)
Shift (time domain)	f(t-a)	$e^{-as}F(s)$
Shift (Laplace domain)	$e^{at}f(t)$	F(s-a)
Multiplying by t	tf(t)	$-\acute{F}(s)$
Multiplying by t^n	$t^n f(t)$	$(-1)^n F^{(n)}(s)$
2	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
9	f(at)	$\frac{1}{ a }F(\frac{s}{a})$
Hyperbolic sine	$sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
Hyperbolic cosine	$cosh(\omega t)$	$\frac{s}{s^2-\omega^2}$

Table 3.1: Summary of Laplace transform.