

ملاحظة: مرفق ورق رسم بياني لوغاريتمي مع ورق الاسئلة .

Q1:(10 points) The system shown in the figure (1) . Draw the analogues electrical circuit, use f-v analogy, Then Find transfer Function $\frac{X_0(s)}{X_1(s)}$

Q2:(10 points) Draw the Block Diagram and signal flow graph and find out the transfer function of the circuit shown in figure (2)

Figure(2)

A3: (10 points) Consider the system shown in figuer (3).

- 1. Determine the value of k such that the damping ratio $\zeta=0.5$
- 2. Obtain the rise time (t_r), Peak time (t_p) maximum overshoot(M_p) and settling time (t_s) in the unit step response.

Figure(3)

Q3: **(10 points)** The open loop trasfer function of a unity feedback system is given by:

$$G(s) = \frac{108}{s^2(s+4)(s^2+3s+12)}$$

Determine the steady state error of the system. When the input is given by : $r(t)=2+5t+2t^2$

Q5: (10 points) A feedback system has an open loop trasfer function:

$$G(s)H(s) = \frac{k(1-s)}{s(s^2 + 5s + 9)}$$

Determine the maximum value of k for the closed loop system to be able.

Q6: (10 points) Draw the bode plot for the transfer function below:

$$G(s) = \frac{16(1+0.5 s)}{s^2(1+0.125 s)(1+0.1s)}$$

From the graph determine

- a) Phase crossover frequency
- b) Gain crossover frequency
- c) P.M, G.M
- d) Stability of the system

NOTES:
$$\frac{1}{s\pm a} \overset{L}{\leftrightarrow} e^{\mp at}$$
, $u(t) \overset{L}{\leftrightarrow} \frac{1}{s}$, $\frac{t^{n-1}}{(n-1)!} \overset{L}{\leftrightarrow} \frac{1}{s^n}$