Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Solution Manual for Mechanics of Materials 7th Edition by Beer
Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

PROBLEM 1.1

Two solid cylindrical rods $A B$ and $B C$ are welded together at B and loaded as shown. Knowing that $d_{1}=30 \mathrm{~mm}$ and $d_{2}=50 \mathrm{~mm}$, find the average normal stress at the midsection of $(a) \operatorname{rod} A B,(b) \operatorname{rod} B C$.

SOLUTION

(a) $\operatorname{Rod} A B$:

Force:

$$
P=60 \times 10^{3} \mathrm{~N} \quad \text { tension }
$$

Area:

$$
A=\frac{\pi}{4} d_{1}^{2}=\frac{\pi}{4}\left(30 \times 10^{-3}\right)^{2}=706.86 \times 10^{-6} \mathrm{~m}^{2}
$$

Normal stress: $\quad \sigma_{A B}=\frac{P}{A}=\frac{60 \times 10^{3}}{706.86 \times 10^{-6}}=84.882 \times 10^{6} \mathrm{~Pa}$

$$
\sigma_{A B}=84.9 \mathrm{MPa}
$$

(b) $\operatorname{Rod} B C$:

Force: $\quad P=60 \times 10^{3}-(2)\left(125 \times 10^{3}\right)=-190 \times 10^{3} \mathrm{~N}$
Area: $\quad A=\frac{\pi}{4} d_{2}^{2}=\frac{\pi}{4}\left(50 \times 10^{-3}\right)^{2}=1.96350 \times 10^{-3} \mathrm{~m}^{2}$
Normal stress: $\quad \sigma_{B C}=\frac{P}{A}=\frac{-190 \times 10^{3}}{1.96350 \times 10^{-3}}=-96.766 \times 10^{6} \mathrm{~Pa}$

$$
\sigma_{B C}=-96.8 \mathrm{MPa}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.2

Two solid cylindrical rods $A B$ and $B C$ are welded together at B and loaded as shown. Knowing that the average normal stress must not exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d_{1} and d_{2}.

SOLUTION

(a) $\operatorname{Rod} A B$:

Force:

$$
P=60 \times 10^{3} \mathrm{~N}
$$

Stress: $\quad \sigma_{A B}=150 \times 10^{6} \mathrm{~Pa}$
Area:

$$
A=\frac{\pi}{4} d_{1}^{2}
$$

$$
\sigma_{A B}=\frac{P}{A} \quad \therefore \quad A=\frac{P}{\sigma_{A B}}
$$

$$
\frac{\pi}{4} d_{1}^{2}=\frac{P}{\sigma_{A B}}
$$

$$
d_{1}^{2}=\frac{4 P}{\pi \sigma_{A B}}=\frac{(4)\left(60 \times 10^{3}\right)}{\pi\left(150 \times 10^{6}\right)}=509.30 \times 10^{-6} \mathrm{~m}^{2}
$$

$$
d_{1}=22.568 \times 10^{-3} \mathrm{~m}
$$

$$
d_{1}=22.6 \mathrm{~mm}
$$

(b) $\operatorname{Rod} B C$:

Force:

$$
P=60 \times 10^{3}-(2)\left(125 \times 10^{3}\right)=-190 \times 10^{3} \mathrm{~N}
$$

Stress: $\quad \sigma_{B C}=-150 \times 10^{6} \mathrm{~Pa}$
Area:

$$
\begin{aligned}
A & =\frac{\pi}{4} d_{2}^{2} \\
\sigma_{B C} & =\frac{P}{A}=\frac{4 P}{\pi d_{2}^{2}} \\
d_{2}^{2} & =\frac{4 P}{\pi \sigma_{B C}}=\frac{(4)\left(-190 \times 10^{3}\right)}{\pi\left(-150 \times 10^{6}\right)}=1.61277 \times 10^{-3} \mathrm{~m}^{2} \\
d_{2} & =40.159 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
d_{2}=40.2 \mathrm{~mm}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.3

Two solid cylindrical rods $A B$ and $B C$ are welded together at B and loaded as shown. Knowing that $P=10 \mathrm{kips}$, find the average normal stress at the midsection of $(a) \operatorname{rod} A B,(b) \operatorname{rod} B C$.

SOLUTION

(a) $\operatorname{Rod} A B$:

$$
\begin{aligned}
P & =12+10=22 \mathrm{kips} \\
A & =\frac{\pi}{4} d_{1}^{2}=\frac{\pi}{4}(1.25)^{2}=1.22718 \mathrm{in}^{2} \\
\sigma_{A B} & =\frac{P}{A}=\frac{22}{1.22718}=17.927 \mathrm{ksi} \quad \sigma_{A B}=17.93 \mathrm{ksi}
\end{aligned}
$$

(b) $\operatorname{Rod} B C$:

$$
\begin{aligned}
P & =10 \mathrm{kips} \\
A & =\frac{\pi}{4} d_{2}^{2}=\frac{\pi}{4}(0.75)^{2}=0.44179 \mathrm{in}^{2} \\
\sigma_{A B} & =\frac{P}{A}=\frac{10}{0.44179}=22.635 \mathrm{ksi}
\end{aligned}
$$

$$
\sigma_{A B}=22.6 \mathrm{ksi}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.4

Two solid cylindrical rods $A B$ and $B C$ are welded together at B and loaded as shown. Determine the magnitude of the force \mathbf{P} for which the tensile stresses in rods $A B$ and $B C$ are equal.

SOLUTION

(a) $\operatorname{Rod} A B$:

$$
\begin{aligned}
P & =P+12 \mathrm{kips} \\
A & =\frac{\pi d^{2}}{4}=\frac{\pi}{4}(1.25 \mathrm{in} .)^{2} \\
A & =1.22718 \mathrm{in}^{2} \\
\sigma_{A B} & =\frac{P+12 \mathrm{kips}}{1.22718 \mathrm{in}^{2}}
\end{aligned}
$$

(b) $\operatorname{Rod} B C$:

$$
\begin{aligned}
& P= P \\
& A= \frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.75 \mathrm{in} .)^{2} \\
& A= 0.44179 \mathrm{in}^{2} \\
& \sigma_{B C}= \frac{P}{0.44179 \mathrm{in}^{2}} \\
& \sigma_{A B}= \sigma_{B C} \\
& \frac{P+12 \mathrm{kips}}{1.22718 \mathrm{in}^{2}}=\frac{P}{0.44179 \mathrm{in}^{2}} \\
& \quad 5.3015=0.78539 P
\end{aligned} \quad P=6.75 \mathrm{kips} .
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

$$
\sigma=\frac{P}{A} \quad \therefore \quad A=\frac{P}{\sigma}
$$

Geometry: $\quad A=\frac{\pi}{4}\left(d_{1}^{2}-d_{2}^{2}\right)$

$$
\begin{aligned}
d_{2}^{2} & =d_{1}^{2}-\frac{4 A}{\pi}=d_{1}^{2}-\frac{4 P}{\pi \sigma} \\
d_{2}^{2} & =\left(25 \times 10^{-3}\right)^{2}-\frac{(4)(1200)}{\pi\left(3.80 \times 10^{6}\right)} \\
& =222.92 \times 10^{-6} \mathrm{~m}^{2} \\
d_{2} & =14.93 \times 10^{-3} \mathrm{~m}
\end{aligned} d_{2}=14.93 \mathrm{~mm}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Areas:

$$
\begin{aligned}
& A_{A B}=\frac{\pi}{4}(15 \mathrm{~mm})^{2}=176.715 \mathrm{~mm}^{2}=176.715 \times 10^{-6} \mathrm{~m}^{2} \\
& A_{B C}=\frac{\pi}{4}(10 \mathrm{~mm})^{2}=78.54 \mathrm{~mm}^{2}=78.54 \times 10^{-6} \mathrm{~m}^{2}
\end{aligned}
$$

From geometry,

$$
b=100-a
$$

Weights:

$$
\begin{aligned}
& W_{A B}=\rho g A_{A B} \ell_{A B}=(8470)(9.81)\left(176.715 \times 10^{-6}\right) a=14.683 a \\
& W_{B C}=\rho g A_{B C} \ell_{B C}=(8470)(9.81)\left(78.54 \times 10^{-6}\right)(100-a)=652.59-6.526 a
\end{aligned}
$$

Normal stresses:
At A,

$$
\begin{align*}
& P_{A}=W_{A B}+W_{B C}=652.59+8.157 a \tag{1}\\
& \sigma_{A}=\frac{P_{A}}{A_{A B}}=3.6930 \times 10^{6}+46.160 \times 10^{3} a
\end{align*}
$$

At B,

$$
\begin{align*}
P_{B} & =W_{B C}=652.59-6.526 a \tag{2}\\
\sigma_{B} & =\frac{P_{B}}{A_{B C}}=8.3090 \times 10^{6}-83.090 \times 10^{3} a
\end{align*}
$$

(a) Length of rod $A B$. The maximum stress in $A B C$ is minimum when $\sigma_{A}=\sigma_{B}$ or

$$
4.6160 \times 10^{6}-129.25 \times 10^{3} a=0
$$

$$
a=35.71 \mathrm{~m}
$$

$$
\ell_{A B}=a=35.7 \mathrm{~m}
$$

(b) Maximum normal stress.

$$
\begin{array}{ll}
\sigma_{A}=3.6930 \times 10^{6}+\left(46.160 \times 10^{3}\right)(35.71) & \\
\sigma_{B}=8.3090 \times 10^{6}-\left(83.090 \times 10^{3}\right)(35.71) & \sigma=5.34 \mathrm{MPa} \\
\sigma_{A}=\sigma_{B}=5.34 \times 10^{6} \mathrm{~Pa} & \sigma
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Use bar $A B C$ as a free body.

$\Sigma M_{C}=0: \quad(0.040) F_{B D}-(0.025+0.040)\left(20 \times 10^{3}\right)=0$
$F_{B D}=32.5 \times 10^{3} \mathrm{~N} \quad \operatorname{Link} B D$ is in tension.
$\Sigma M_{B}=0:-(0.040) F_{C E}-(0.025)\left(20 \times 10^{3}\right)=0$

$$
F_{C E}=-12.5 \times 10^{3} \mathrm{~N} \quad \text { Link } C E \text { is in compression. }
$$

Net area of one link for tension $=(0.008)(0.036-0.016)=160 \times 10^{-6} \mathrm{~m}^{2}$
For two parallel links, $\quad A_{\text {net }}=320 \times 10^{-6} \mathrm{~m}^{2}$
(a) $\sigma_{B D}=\frac{F_{B D}}{A_{\text {net }}}=\frac{32.5 \times 10^{3}}{320 \times 10^{-6}}=101.563 \times 10^{6} \quad \sigma_{B D}=101.6 \mathrm{MPa}$

Area for one link in compression $=(0.008)(0.036)=288 \times 10^{-6} \mathrm{~m}^{2}$
For two parallel links, $\quad A=576 \times 10^{-6} \mathrm{~m}^{2}$
(b) $\quad \sigma_{C E}=\frac{F_{C E}}{A}=\frac{-12.5 \times 10^{3}}{576 \times 10^{-6}}=-21.701 \times 10^{-6}$
$\sigma_{C E}=-21.7 \mathrm{MPa}$

Full file at https://TestbankDirect.eu/

SOLUTION

Use the plate together with two pulleys as a free body. Note that the cable tension causes at $1200 \mathrm{lb}-\mathrm{in}$. clockwise couple to act on the body.

$+\Sigma M_{B}=0: \quad-(12+4)\left(F_{A C} \cos 30^{\circ}\right)+(10)\left(F_{A C} \sin 30^{\circ}\right)-1200 \mathrm{lb}=0$

$$
F_{A C}=-\frac{1200 \mathrm{lb}}{16 \cos 30^{\circ}-10 \sin 30^{\circ}}=-135.500 \mathrm{lb}
$$

Area of link $A C$:

$$
A=1 \mathrm{in} . \times \frac{1}{8} \mathrm{in} .=0.125 \mathrm{in}^{2}
$$

Stress in link $A C$:

$$
\sigma_{A C}=\frac{F_{A C}}{A}=-\frac{135.50}{0.125}=1084 \mathrm{psi}=1.084 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.9

Three forces, each of magnitude $P=4 \mathrm{kN}$, are applied to the mechanism shown. Determine the cross-sectional area of the uniform portion of rod $B E$ for which the normal stress in that portion is +100 MPa .

SOLUTION

Draw free body diagrams of $A C$ and $C D$.

Free Body $C D: \quad+\left\lceil\Sigma M_{D}=0: \quad 0.150 P-0.250 C=0\right.$

$$
C=0.6 P
$$

Free Body $A C$:

$$
+M_{A}=0: \quad 0.150 F_{B E}-0.350 P-0.450 P-0.450 C=0
$$

$$
F_{B E}=\frac{1.07}{0.150} P=7.1333 P=(7.133)(4 \mathrm{kN})=28.533 \mathrm{kN}
$$

Required area of $B E: \quad \quad \sigma_{B E}=\frac{F_{B E}}{A_{B E}}$
$A_{B E}=\frac{F_{B E}}{\sigma_{B E}}=\frac{28.533 \times 10^{3}}{100 \times 10^{6}}=285.33 \times 10^{-6} \mathrm{~m}^{2}$

$$
A_{B E}=285 \mathrm{~mm}^{2}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Use bar $A B C$ as a free body.

(a) $\quad \underline{\theta=0}$.
$+\Sigma M_{A}=0: \quad\left(18 \sin 30^{\circ}\right)(4)-\left(12 \cos 30^{\circ}\right) F_{B D}=0$
$F_{B D}=3.4641$ kips (tension)
Area for tension loading: $\quad A=(b-d) t=\left(1-\frac{3}{8}\right)\left(\frac{1}{2}\right)=0.31250 \mathrm{in}^{2}$
Stress:

$$
\sigma=\frac{F_{B D}}{A}=\frac{3.4641 \mathrm{kips}}{0.31250 \mathrm{in}^{2}}
$$

$$
\sigma=11.09 \mathrm{ksi}
$$

(b) $\quad \theta=90^{\circ}$.
$+\Sigma M_{A}=0:-\left(18 \cos 30^{\circ}\right)(4)-\left(12 \cos 30^{\circ}\right) F_{B D}=0$
$F_{B D}=-6 \mathrm{kips}$ i.e. compression.
Area for compression loading: $\quad A=b t=(1)\left(\frac{1}{2}\right)=0.5 \mathrm{in}^{2}$
Stress:

$$
\sigma=\frac{F_{B D}}{A}=\frac{-6 \mathrm{kips}}{0.5 \mathrm{in}^{2}}
$$

$$
\sigma=12.00 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Use entire truss as free body.

$$
\begin{aligned}
+\Sigma \Sigma M_{H} & =0: \quad(9)(80)+(18)(80)+(27)(80)-36 A_{y}=0 \\
A_{y} & =120 \mathrm{kips}
\end{aligned}
$$

Use portion of truss to the left of a section cutting members $B D, B E$, and $C E$.

$$
+\uparrow \Sigma F_{y}=0: \quad 120-80-\frac{12}{15} F_{B E}=0 \quad \therefore F_{B E}=50 \mathrm{kips}
$$

$$
\sigma_{B E}=\frac{F_{B E}}{A}=\frac{50 \mathrm{kips}}{5.87 \mathrm{in}^{2}}
$$

$$
\sigma_{B E}=8.52 \mathrm{ksi}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Add support reactions to figure as shown.
Using entire frame as free body,

$$
\begin{aligned}
\Sigma M_{A}=0: \quad 40 D_{x} & -(45+30)(480)=0 \\
D_{x} & =900 \mathrm{lb}
\end{aligned}
$$

Use member DEF as free body.

Stress in tension member $C F$:
(b) $\quad \sigma_{C F}=\frac{F_{C F}}{A_{\text {min }}}=\frac{750}{7.0} \quad \sigma_{C F}=107.1 \mathrm{psi}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.14

Two hydraulic cylinders are used to control the position of the robotic arm $A B C$. Knowing that the control rods attached at A and D each have a $20-\mathrm{mm}$ diameter and happen to be parallel in the position shown, determine the average normal stress in (a) member $A E$, (b) member $D G$.

SOLUTION

Use member $A B C$ as free body.

$$
\begin{aligned}
+\Sigma M_{B} & =0: \quad(0.150) \frac{4}{5} F_{A E}-(0.600)(800)=0 \\
F_{A E} & =4 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Area of rod in member $A E$ is $\quad A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}\left(20 \times 10^{-3}\right)^{2}=314.16 \times 10^{-6} \mathrm{~m}^{2}$
Stress in $\operatorname{rod} A E$:

$$
\sigma_{A E}=\frac{F_{A E}}{A}=\frac{4 \times 10^{3}}{314.16 \times 10^{-6}}=12.7324 \times 10^{6} \mathrm{~Pa}
$$

(a) $\sigma_{A E}=12.73 \mathrm{MPa}$

Use combined members $A B C$ and $B F D$ as free body.

$$
\begin{aligned}
+) \Sigma M_{F} & =0: \quad(0.150)\left(\frac{4}{5} F_{A E}\right)-(0.200)\left(\frac{4}{5} F_{D G}\right)-(1.050-0.350)(800)=0 \\
F_{D G} & =-1500 \mathrm{~N}
\end{aligned}
$$

Area of $\operatorname{rod} D G$:

$$
A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}\left(20 \times 10^{-3}\right)^{2}=314.16 \times 10^{-6} \mathrm{~m}^{2}
$$

Stress in $\operatorname{rod} D G: \quad \sigma_{D G}=\frac{F_{D G}}{A}=\frac{-1500}{3.1416 \times 10^{-6}}=-4.7746 \times 10^{6} \mathrm{~Pa}$
(b) $\quad \sigma_{D G}=-4.77 \mathrm{MPa}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.15

Determine the diameter of the largest circular hole that can be punched into a sheet of polystyrene 6 mm thick, knowing that the force exerted by the punch is 45 kN and that a $55-\mathrm{MPa}$ average shearing stress is required to cause the material to fail.

SOLUTION

For cylindrical failure surface: $\quad A=\pi d t$
Shearing stress:

$$
\tau=\frac{P}{A} \quad \text { or } \quad A=\frac{P}{\tau}
$$

Therefore,

$$
\frac{P}{\tau}=\pi d t
$$

Finally,

$$
\begin{aligned}
d & =\frac{P}{\pi t \tau} \\
& =\frac{45 \times 10^{3} \mathrm{~N}}{\pi(0.006 \mathrm{~m})\left(55 \times 10^{6} \mathrm{~Pa}\right)} \\
& =43.406 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.16

Two wooden planks, each $\frac{1}{2} \mathrm{in}$. thick and 9 in . wide, are joined by the dry mortise joint shown. Knowing that the wood used shears off along its grain when the average shearing stress reaches 1.20 ksi , determine the magnitude P of the axial load that will cause the joint to fail.

SOLUTION

Six areas must be sheared off when the joint fails. Each of these areas has dimensions $\frac{5}{8} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$., its area being

$$
A=\frac{5}{8} \times \frac{1}{2}=\frac{5}{16} \mathrm{in}^{2}=0.3125 \mathrm{in}^{2}
$$

At failure, the force carried by each area is

$$
F=\tau A=(1.20 \mathrm{ksi})\left(0.3125 \mathrm{in}^{2}\right)=0.375 \mathrm{kips}
$$

Since there are six failure areas,

$$
P=6 F=(6)(0.375) \quad P=2.25 \mathrm{kips}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.17

When the force \mathbf{P} reached 1600 lb , the wooden specimen shown failed in shear along the surface indicated by the dashed line. Determine the average shearing stress along that surface at the time of failure.

SOLUTION

Area being sheared: $\quad A=3$ in. $\times 0.6$ in. $=1.8$ in 2
Force: $\quad P=1600 \mathrm{lb}$
Shearing stress: $\quad \tau=\frac{P}{A}-\frac{1600 \mathrm{lb}}{1.8 \mathrm{in}^{2}}=8.8889 \times 10^{2} \mathrm{psi}$ $\tau=889 \mathrm{psi}$

Full file at https://TestbankDirect.eu/

PROBLEM 1.18

A load \mathbf{P} is applied to a steel rod supported as shown by an aluminum plate into which a 12 -mm-diameter hole has been drilled. Knowing that the shearing stress must not exceed 180 MPa in the steel rod and 70 MPa in the aluminum plate, determine the largest load \mathbf{P} that can be applied to the rod.

SOLUTION

For steel:

$$
\begin{aligned}
A_{1} & =\pi d t=\pi(0.012 \mathrm{~m})(0.010 \mathrm{~m}) \\
& =376.99 \times 10^{-6} \mathrm{~m}^{2} \\
\tau_{1}=\frac{P}{A} \therefore P & =A_{1} \tau_{1}=\left(376.99 \times 10^{-6} \mathrm{~m}^{2}\right)\left(180 \times 10^{6} \mathrm{~Pa}\right) \\
& =67.858 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

For aluminum:

$$
\begin{gathered}
A_{2}=\pi d t=\pi(0.040 \mathrm{~m})(0.008 \mathrm{~m})=1.00531 \times 10^{-3} \mathrm{~m}^{2} \\
\tau_{2}=\frac{P}{A_{2}} \therefore P=A_{2} \tau_{2}=\left(1.00531 \times 10^{-3} \mathrm{~m}^{2}\right)\left(70 \times 10^{6} \mathrm{~Pa}\right)=70.372 \times 10^{3} \mathrm{~N}
\end{gathered}
$$

Limiting value of P is the smaller value, so

$$
P=67.9 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Bearing area: $A_{b}=L w$

$$
\begin{array}{rlr}
\sigma_{b} & =\frac{P}{A_{b}}=\frac{P}{L w} \\
L & =\frac{P}{\sigma_{b} w}=\frac{20 \times 10^{3} \mathrm{lb}}{(400 \mathrm{psi})(6 \mathrm{in} .)}=8.33 \mathrm{in} . & L=8.33 \mathrm{in} .
\end{array}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.20

Three wooden planks are fastened together by a series of bolts to form a column. The diameter of each bolt is 12 mm and the inner diameter of each washer is 16 mm , which is slightly larger than the diameter of the holes in the planks. Determine the smallest allowable outer diameter d of the washers, knowing that the average normal stress in the bolts is 36 MPa and that the bearing stress between the washers and the planks must not exceed 8.5 MPa .

SOLUTION

Bolt:

$$
A_{\text {Bolt }}=\frac{\pi d^{2}}{4}=\frac{\pi(0.012 \mathrm{~m})^{2}}{4}=1.13097 \times 10^{-4} \mathrm{~m}^{2}
$$

Tensile force in bolt: $\quad \sigma=\frac{P}{A} \Rightarrow P=\sigma A$

$$
\begin{aligned}
& =\left(36 \times 10^{6} \mathrm{~Pa}\right)\left(1.13097 \times 10^{-4} \mathrm{~m}^{2}\right) \\
& =4.0715 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Bearing area for washer:

$$
A_{w}=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)
$$

and

$$
A_{w}=\frac{P}{\sigma_{B R G}}
$$

Therefore, equating the two expressions for A_{w} gives

$$
\begin{aligned}
\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right) & =\frac{P}{\sigma_{B R G}} \\
d_{o}^{2} & =\frac{4 P}{\pi \sigma_{B R G}}+d_{i}^{2} \\
d_{o}^{2} & =\frac{4}{\pi} \frac{\left(4.0715 \times 10^{3} \mathrm{~N}\right)}{\left(8.5 \times 10^{6} \mathrm{~Pa}\right)}+(0.016 \mathrm{~m})^{2} \\
d_{o}^{2} & =8.6588 \times 10^{-4} \mathrm{~m}^{2} \\
d_{o} & =29.426 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
d_{o}=29.4 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

(a) Bearing stress on concrete footing.

$$
\begin{aligned}
& P=40 \mathrm{kN}=40 \times 10^{3} \mathrm{~N} \\
& A=(100)(120)=12 \times 10^{3} \mathrm{~mm}^{2}=12 \times 10^{-3} \mathrm{~m}^{2} \\
& \sigma=\frac{P}{A}=\frac{40 \times 10^{3}}{12 \times 10^{-3}}=3.3333 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

3.33 MPa
(b) Footing area. $P=40 \times 10^{3} \mathrm{~N} \quad \sigma=145 \mathrm{kPa}=45 \times 10^{3} \mathrm{~Pa}$

$$
\sigma=\frac{P}{A} \quad A=\frac{P}{\sigma}=\frac{40 \times 10^{3}}{145 \times 10^{3}}=0.27586 \mathrm{~m}^{2}
$$

Since the area is square, $A=b^{2}$

$$
b=\sqrt{A}=\sqrt{0.27586}=0.525 \mathrm{~m} \quad b=525 \mathrm{~mm}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.22

An axial load \mathbf{P} is supported by a short $\mathrm{W} 8 \times 40$ column of crosssectional area $A=11.7 \mathrm{in}^{2}$ and is distributed to a concrete foundation by a square plate as shown. Knowing that the average normal stress in the column must not exceed 30 ksi and that the bearing stress on the concrete foundation must not exceed 3.0 ksi , determine the side a of the plate that will provide the most economical and safe design.

SOLUTION

For the column, $\sigma=\frac{P}{A}$ or

$$
P=\sigma A=(30)(11.7)=351 \mathrm{kips}
$$

For the $a \times a$ plate, $\sigma=3.0 \mathrm{ksi}$

$$
A=\frac{P}{\sigma}=\frac{351}{3.0}=117 \mathrm{in}^{2}
$$

Since the plate is square, $A=a^{2}$

$$
a=\sqrt{A}=\sqrt{117}
$$

$$
a=10.82 \mathrm{in}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

$\operatorname{Rod} A B$ is in compression.

$$
\begin{aligned}
& A=b t \quad \text { where } \quad b=2 \mathrm{in.} \text { and } t=\frac{1}{4} \mathrm{in.} \\
& P=-\sigma A=-(-20)(2)\left(\frac{1}{4}\right)=10 \mathrm{kips}
\end{aligned}
$$

Pin: $\quad \tau_{P}=\frac{P}{A_{P}}$
and $\quad A_{P}=\frac{\pi}{4} d^{2}$
(a) $d=\sqrt{\frac{4 A_{P}}{\pi}}=\sqrt{\frac{4 P}{\pi \tau_{P}}}=\sqrt{\frac{(4)(10)}{\pi(12)}}=1.03006 \mathrm{in}$.

$$
d=1.030 \mathrm{in} .
$$

(b) $\quad \sigma_{b}=\frac{P}{d t}=\frac{10}{(1.03006)(0.25)}=38.833 \mathrm{ksi}$

$$
\sigma_{b}=38.8 \mathrm{ksi}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Geometry: Triangle $A B C$ is an isoseles triangle with angles shown here.

Use joint A as a free body.

Law of sines applied to force triangle:

$$
\begin{aligned}
\frac{P}{\sin 30^{\circ}} & =\frac{F_{A B}}{\sin 120^{\circ}}=\frac{F_{A C}}{\sin 30^{\circ}} \\
P & =\frac{F_{A B} \sin 30^{\circ}}{\sin 120^{\circ}}=0.57735 F_{A B} \\
P & =\frac{F_{A C} \sin 30^{\circ}}{\sin 30^{\circ}}=F_{A C}
\end{aligned}
$$

Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.24 (Continued)

If shearing stress in pin at B is critical,

$$
\begin{aligned}
A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.010)^{2}=78.54 \times 10^{-6} \mathrm{~m}^{2} \\
F_{A B} & =2 A \tau=(2)\left(78.54 \times 10^{-6}\right)\left(120 \times 10^{6}\right)=18.850 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

If bearing stress in member $A B$ at bracket at A is critical,

$$
\begin{aligned}
A_{b} & =t d=(0.016)(0.010)=160 \times 10^{-6} \mathrm{~m}^{2} \\
F_{A B} & =A_{b} \sigma_{b}=\left(160 \times 10^{-6}\right)\left(90 \times 10^{6}\right)=14.40 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

If bearing stress in the bracket at B is critical,

$$
\begin{aligned}
A_{b} & =2 t d=(2)(0.012)(0.010)=240 \times 10^{-6} \mathrm{~m}^{2} \\
F_{A B} & =A_{b} \sigma_{b}=\left(240 \times 10^{-6}\right)\left(90 \times 10^{6}\right)=21.6 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Allowable $F_{A B}$ is the smallest, i.e., $14.40 \times 10^{3} \mathrm{~N}$
Then from statics, $\quad P_{\text {allow }}=(0.57735)\left(14.40 \times 10^{3}\right)$

$$
=8.31 \times 10^{3} \mathrm{~N}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Geometry: Triangle $A B C$ is an isoseles triangle with angles shown here.

Use joint A as a free body.

Law of sines applied to force triangle:

$$
\begin{aligned}
\frac{P}{\sin 20^{\circ}} & =\frac{F_{A B}}{\sin 110^{\circ}}=\frac{F_{A C}}{\sin 50^{\circ}} \\
F_{A B} & =\frac{P \sin 110^{\circ}}{\sin 20^{\circ}} \\
& =\frac{(9) \sin 110^{\circ}}{\sin 20^{\circ}}=24.727 \mathrm{kN}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.25 (Continued)

(a) Allowable pin diameter.

$$
\begin{gathered}
\tau=\frac{F_{A B}}{2 A_{P}}=\frac{F_{A B}}{2 \frac{\pi}{4} d^{2}}=\frac{2 F_{A B}}{\pi d^{2}} \text { where } F_{A B}=24.727 \times 10^{3} \mathrm{~N} \\
d^{2}=\frac{2 F_{A B}}{\pi \tau}=\frac{(2)\left(24.727 \times 10^{3}\right)}{\pi\left(120 \times 10^{6}\right)}=131.181 \times 10^{-6} \mathrm{~m}^{2} \\
d=11.4534 \times 10^{-3} \mathrm{~m}
\end{gathered}
$$

11.45 mm
(b) Bearing stress in $A B$ at A.

$$
\begin{aligned}
& A_{b}=t d=(0.016)\left(11.4534 \times 10^{-3}\right)=183.254 \times 10^{-6} \mathrm{~m}^{2} \\
& \sigma_{b}=\frac{F_{A B}}{A_{b}}=\frac{24.727 \times 10^{3}}{183.254 \times 10^{-6}}=134.933 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

134.9 MPa
(c) Bearing stress in support brackets at B.

$$
\begin{gathered}
A=t d=(0.012)\left(11.4534 \times 10^{-3}\right)=137.441 \times 10^{-6} \mathrm{~m}^{2} \\
\sigma_{b}=\frac{\frac{1}{2} F_{A B}}{A}=\frac{(0.5)\left(24.727 \times 10^{3}\right)}{137.441 \times 10^{-6}}=89.955 \times 10^{6} \mathrm{~Pa}
\end{gathered}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.26

The hydraulic cylinder $C F$, which partially controls the position of rod $D E$, has been locked in the position shown. Member $B D$ is 15 mm thick and is connected at C to the vertical rod by a 9 -mm-diameter bolt. Knowing that $P=2 \mathrm{kN}$ and $\theta=75^{\circ}$, determine (a) the average shearing stress in the bolt, (b) the bearing stress at C in member $B D$.

SOLUTION

Free Body: Member $B D$.

$$
\begin{aligned}
&+\Sigma M_{c}= 0: \quad \frac{40}{41} F_{A B}\left(100 \cos 20^{\circ}\right)-\frac{9}{4} F_{A B}\left(100 \sin 20^{\circ}\right) \\
&-(2 \mathrm{kN}) \cos 75^{\circ}\left(175 \sin 20^{\circ}\right)-(2 \mathrm{kN}) \sin 75^{\circ}\left(175 \cos 20^{\circ}\right)=0 \\
& \frac{100}{41} F_{A B}\left(40 \cos 20^{\circ}-9 \sin 20^{\circ}\right)=(2 \mathrm{kN})(175) \sin \left(75^{\circ}+20^{\circ}\right) \\
& F_{A B}=4.1424 \mathrm{kN} \\
&+\Sigma F_{x}= 0: \quad C_{x}-\frac{9}{41}(4.1424 \mathrm{kN})+(2 \mathrm{kN}) \cos 75^{\circ}=0 \\
& C_{x}=0.39167 \mathrm{kN} \\
&+\uparrow \Sigma F_{y}=0: \quad C_{y}-\frac{40}{41}(4.1424 \mathrm{kN})-(2 \mathrm{kN}) \sin 75^{\circ}=0 \\
& C_{y}=5.9732 \mathrm{kN} \\
& \mathrm{C}=5.9860 \mathrm{kN} \mathrm{C} 86.2^{\circ}
\end{aligned}
$$

(a) $\tau_{\text {ave }}=\frac{C}{A}=\frac{5.9860 \times 10^{3} \mathrm{~N}}{\pi(0.0045 \mathrm{~m})^{2}}=94.1 \times 10^{6} \mathrm{~Pa}=94.1 \mathrm{MPa}$
(b) $\quad \tau_{b}=\frac{C}{t d}=\frac{5.9860 \times 10^{3} \mathrm{~N}}{(0.015 \mathrm{~m})(0.009 \mathrm{~m})}=44.3 \times 10^{6} \mathrm{~Pa}=44.3 \mathrm{MPa}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Use bar $A B C$ as a free body.

$$
\begin{aligned}
+\Sigma M_{C} & =0:(0.040) F_{B D}-(0.025+0.040)\left(20 \times 10^{3}\right)=0 \\
F_{B D} & =32.5 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

(a) Shear pin at $B . \quad \tau=\frac{F_{B D}}{2 A}$ for double shear
where

$$
\begin{array}{ll}
A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.016)^{2}=201.06 \times 10^{-6} \mathrm{~m}^{2} & \\
\tau=\frac{32.5 \times 10^{3}}{(2)\left(201.06 \times 10^{-6}\right)}=80.822 \times 10^{6} \mathrm{~Pa} & \tau=80.8 \mathrm{MPa}
\end{array}
$$

(b) Bearing: link $B D . \quad A=d t=(0.016)(0.008)=128 \times 10^{-6} \mathrm{~m}^{2}$

$$
\sigma_{b}=\frac{\frac{1}{2} F_{B D}}{A}=\frac{(0.5)\left(32.5 \times 10^{3}\right)}{128 \times 10^{-6}}=126.95 \times 10^{6} \mathrm{~Pa} \quad \sigma_{b}=127.0 \mathrm{MPa}
$$

(c) Bearing in $A B C$ at $B . \quad A=d t=(0.016)(0.010)=160 \times 10^{-6} \mathrm{~m}^{2}$

$$
\sigma_{b}=\frac{F_{B D}}{A}=\frac{32.5 \times 10^{3}}{160 \times 10^{-6}}=203.12 \times 10^{6} \mathrm{~Pa} \quad \sigma_{b}=203 \mathrm{MPa}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Use one fork as a free body.

$\rightarrow \underbrace{}_{2}$

$$
\begin{aligned}
&+\Sigma M_{B}=0: \quad 24 E-(20)(1500)=0 \\
& E=1250 \mathrm{lb} \longrightarrow \\
&+\Sigma F_{x}=0: \quad E+B_{x}=0 \\
& B_{x}=-E \\
& B_{x}=1250 \mathrm{lb} \\
&+\uparrow \Sigma F_{y}=0: \quad B_{y}-1500=0 \quad B_{y}=1500 \mathrm{lb} \\
& B=\sqrt{B_{x}^{2}+B_{y}^{2}}=\sqrt{1250^{2}+1500^{2}}=1952.56 \mathrm{lb}
\end{aligned}
$$

(a) Shearing stress in pin at B.

$$
\begin{aligned}
A_{\mathrm{pin}} & =\frac{\pi}{4} d_{\mathrm{pin}}^{2}=\frac{\pi}{4}\left(\frac{1}{2}\right)^{2}=0.196350 \mathrm{in}^{2} \\
\tau & =\frac{B}{A_{\mathrm{pin}}}=\frac{1952.56}{0.196350}=9.94 \times 10^{3} \mathrm{psi}
\end{aligned}
$$

$$
\tau=9.94 \mathrm{ksi}
$$

(b) Bearing stress at B.

$$
\sigma=\frac{B}{d t}=\frac{1952.56}{\left(\frac{1}{2}\right)\left(\frac{5}{8}\right)}=6.25 \times 10^{3} \mathrm{psi}
$$

$$
\sigma=6.25 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.29

Two wooden members of uniform rectangular cross section are joined by the simple glued scarf splice shown. Knowing that $P=11 \mathrm{kN}$, determine the normal and shearing stresses in the glued splice.

SOLUTION

$$
\begin{array}{rlr}
\theta & =90^{\circ}-45^{\circ}=45^{\circ} \\
P & =11 \mathrm{kN}=11 \times 10^{3} \mathrm{~N} & \\
A_{0} & =(150)(75)=11.25 \times 10^{3} \mathrm{~mm}^{2}=11.25 \times 10^{-3} \mathrm{~m}^{2} & \sigma=489 \mathrm{kPa} \\
\sigma & =\frac{P \cos ^{2} \theta}{A_{0}}=\frac{\left(11 \times 10^{3}\right) \cos ^{2} 45^{\circ}}{11.25 \times 10^{-3}}=489 \times 10^{3} \mathrm{~Pa} & \tau=489 \mathrm{kPa} \\
\tau & =\frac{P \sin 2 \theta}{2 A_{0}}=\frac{\left(11 \times 10^{3}\right)\left(\sin 90^{\circ}\right)}{(2)\left(11.25 \times 10^{-3}\right)}=489 \times 10^{3} \mathrm{~Pa} &
\end{array}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.30

Two wooden members of uniform rectangular cross section are joined by the simple glued scarf splice shown. Knowing that the maximum allowable shearing stress in the glued splice is 620 kPa , determine (a) the largest load \mathbf{P} that can be safely applied, (b) the corresponding tensile stress in the splice.

SOLUTION

$$
\begin{aligned}
\theta & =90^{\circ}-45^{\circ}=45^{\circ} \\
A_{0} & =(150)(75)=11.25 \times 10^{3} \mathrm{~mm}^{2}=11.25 \times 10^{-3} \mathrm{~m}^{2} \\
\tau & =620 \mathrm{kPa}=620 \times 10^{3} \mathrm{~Pa} \\
\tau & =\frac{P \sin 2 \theta}{2 A_{0}}
\end{aligned}
$$

(a) $\quad P=\frac{2 A_{0} \tau}{\sin 2 \theta}=\frac{(2)\left(11.25 \times 10^{-3}\right)\left(620 \times 10^{3}\right)}{\sin 90^{\circ}}$

$$
=13.95 \times 10^{3} \mathrm{~N}
$$

$$
P=13.95 \mathrm{kN}
$$

(b) $\quad \sigma=\frac{P \cos ^{2} \theta}{A_{0}}=\frac{\left(13.95 \times 10^{3}\right)\left(\cos 45^{\circ}\right)^{2}}{11.25 \times 10^{-3}}$

$$
=620 \times 10^{3} \mathrm{~Pa}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.31

The 1.4-kip load \mathbf{P} is supported by two wooden members of uniform cross section that are joined by the simple glued scarf splice shown. Determine the normal and shearing stresses in the glued splice.

SOLUTION

$$
\begin{aligned}
P & =1400 \mathrm{lb} \quad \theta=90^{\circ}-60^{\circ}=30^{\circ} & \\
A_{0} & =(5.0)(3.0)=15 \mathrm{in}^{2} & \\
\sigma & =\frac{P \cos ^{2} \theta}{A_{0}}=\frac{(1400)\left(\cos 30^{\circ}\right)^{2}}{15} & \sigma=70.0 \mathrm{psi} \\
\tau & =\frac{P \sin 2 \theta}{2 A_{0}}=\frac{(1400) \sin 60^{\circ}}{(2)(15)} & \tau=40.4 \mathrm{psi}
\end{aligned}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

$$
\begin{aligned}
A_{0} & =(5.0)(3.0)=15 \mathrm{in}^{2} \\
\theta & =90^{\circ}-60^{\circ}=30^{\circ} \\
\sigma & =\frac{P \cos ^{2} \theta}{A_{0}}
\end{aligned}
$$

(a)
(b)

$$
\begin{array}{rlr}
P & =\frac{\sigma A_{0}}{\cos ^{2} \theta}=\frac{(75)(15)}{\cos ^{2} 30^{\circ}}=1500 \mathrm{lb} & P=1.500 \mathrm{kips} \\
\tau & =\frac{P \sin 2 \theta}{2 A_{0}}=\frac{(1500) \sin 60^{\circ}}{(2)(15)} & \tau=43.3 \mathrm{psi}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.33

A centric load \mathbf{P} is applied to the granite block shown. Knowing that the resulting maximum value of the shearing stress in the block is 2.5 ksi , determine (a) the magnitude of $\mathbf{P},(b)$ the orientation of the surface on which the maximum shearing stress occurs, (c) the normal stress exerted on that surface, (d) the maximum value of the normal stress in the block.

SOLUTION

$$
\begin{aligned}
A_{0} & =(6)(6)=36 \mathrm{in}^{2} \\
\tau_{\max } & =2.5 \mathrm{ksi} \\
\theta & =45^{\circ} \text { for plane of } \tau_{\max }
\end{aligned}
$$

(a) $\quad \tau_{\text {max }}=\frac{|P|}{2 A_{0}} \quad \therefore|P|=2 A_{0} \tau_{\max }=(2)(36)(2.5)$

$$
\text { (b) } \sin 2 \theta=1 \quad 2 \theta=90^{\circ}
$$

$$
\text { (c) } \quad \sigma_{45}=\frac{P}{A_{0}} \cos ^{2} 45^{\circ}=\frac{P}{2 A_{0}}=-\frac{180}{(2)(36)}
$$

$$
\text { (d) } \quad \sigma_{\max }=\frac{P}{A_{0}}=\frac{-180}{36}
$$

$$
\begin{gathered}
P=180.0 \mathrm{kips} \\
\quad \theta=45.0^{\circ} \\
\sigma_{45}=-2.50 \mathrm{ksi} \\
\sigma_{\max }=-5.00 \mathrm{ksi}
\end{gathered}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

$$
\begin{aligned}
A_{0} & =(6)(6)=36 \text { in }^{2} \\
\sigma & =\frac{P}{A_{0}} \cos ^{2} \theta=\frac{-240}{36} \cos ^{2} \theta=-6.67 \cos ^{2} \theta
\end{aligned}
$$

(a) max tensile stress $=0$ at $\theta=90.0^{\circ}$
max. compressive stress $=6.67 \mathrm{ksi}$ at $\theta=0^{\circ}$
(b) $\quad \tau_{\max }=\frac{P}{2 A_{0}}=\frac{240}{(2)(36)}$

$$
\begin{array}{r}
\tau_{\max }=3.33 \mathrm{ksi} \\
\text { at } \theta=45^{\circ}
\end{array}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

$$
\begin{array}{rlrl}
d_{o} & =0.400 \mathrm{~m} \\
r_{o} & =\frac{1}{2} d_{o}=0.200 \mathrm{~m} \\
r_{i} & =r_{o}-t=0.200-0.010=0.190 \mathrm{~m} \\
A_{o} & =\pi\left(r_{o}^{2}-r_{i}^{2}\right)=\pi\left(0.200^{2}-0.190^{2}\right) \\
& =12.2522 \times 10^{-3} \mathrm{~m}^{2} \\
\theta & =20^{\circ} & \\
\sigma & =\frac{P}{A_{o}}=\cos ^{2} \theta=\frac{-300 \times 10^{3} \cos ^{2} 20^{\circ}}{12.2522 \times 10^{-3}}=21.621 \times 10^{6} \mathrm{~Pa} & \sigma=-21.6 \mathrm{MPa} \\
\tau & =\frac{P}{2 A_{0}}=\sin 2 \theta=\frac{-300 \times 10^{3} \sin 40^{\circ}}{(2)\left(12.2522 \times 10^{-3}\right)}=7.8695 \times 10^{6} \mathrm{~Pa} & \tau=7.87 \mathrm{MPa}
\end{array}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.36

A steel pipe of $400-\mathrm{mm}$ outer diameter is fabricated from $10-\mathrm{mm}$ thick plate by welding along a helix that forms an angle of 20° with a plane perpendicular to the axis of the pipe. Knowing that the maximum allowable normal and shearing stresses in the directions respectively normal and tangential to the weld are $\sigma=60 \mathrm{MPa}$ and $\tau=36 \mathrm{MPa}$, determine the magnitude P of the largest axial force that can be applied to the pipe.

SOLUTION

Based on

$$
\begin{aligned}
d_{o} & =0.400 \mathrm{~m} \\
r_{o} & =\frac{1}{2} d_{o}=0.200 \mathrm{~m} \\
r_{i} & =r_{o}-t=0.200-0.010=0.190 \mathrm{~m} \\
A_{o} & =\pi\left(r_{o}^{2}-r_{i}^{2}\right)=\pi\left(0.200^{2}-0.190^{2}\right) \\
& =12.2522 \times 10^{-3} \mathrm{~m}^{2} \\
\theta & =20^{\circ}
\end{aligned}
$$

$$
|\sigma|=60 \mathrm{MPa}: \quad \sigma=\frac{P}{A_{0}} \cos ^{2} \theta
$$

$$
P=\frac{A_{o} \sigma}{\cos ^{2} \theta}=\frac{\left(12.2522 \times 10^{-3}\right)\left(60 \times 10^{6}\right)}{\cos ^{2} 20^{\circ}}=832.52 \times 10^{3} \mathrm{~N}
$$

Based on

$$
\begin{aligned}
& |\tau|=30 \mathrm{MPa}: \quad \tau=\frac{P}{2 A_{o}} \sin 2 \theta \\
& P=\frac{2 A_{o} \tau}{\sin 2 \theta}=\frac{(2)\left(12.2522 \times 10^{-3}\right)\left(36 \times 10^{6}\right)}{\sin 40^{\circ}}=1372.39 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Smaller value is the allowable value of P.

$$
P=833 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Using joint B as a free body and considering symmetry,

$$
2 \cdot \frac{3}{5} F_{A B}-Q=0 \quad Q=\frac{6}{5} F_{A B}
$$

Using joint A as a free body and considering symmetry,

$$
\begin{aligned}
2 \cdot \frac{4}{5} F_{A B}-F_{A C} & =0 \\
\frac{8}{5} \cdot \frac{5}{6} Q-F_{A C} & =0 \quad \therefore \quad Q=\frac{3}{4} F_{A C}
\end{aligned}
$$

Based on strength of cable $B E$,

$$
Q_{U}=\sigma_{U} A=\sigma_{U} \frac{\pi}{4} d^{2}=(70) \frac{\pi}{4}\left(\frac{1}{2}\right)^{2}=13.7445 \mathrm{kips}
$$

Based on strength of steel loop,

$$
\begin{aligned}
Q_{U} & =\frac{6}{5} F_{A B, U}=\frac{6}{5} \sigma_{U} A=\frac{6}{5} \sigma_{U} \frac{\pi}{4} d^{2} \\
& =\frac{6}{5}(70) \frac{\pi}{4}\left(\frac{3}{8}\right)^{2}=9.2775 \mathrm{kips}
\end{aligned}
$$

Based on strength of rod $A C$,

$$
Q_{U}=\frac{3}{4} F_{A C, U}=\frac{3}{4} \sigma_{U} A=\frac{3}{4} \sigma_{U} \frac{\pi}{4} d^{2}=\frac{3}{4}(38) \frac{\pi}{4}(1.0)^{2}=22.384 \mathrm{kips}
$$

Actual ultimate load Q_{U} is the smallest, $\therefore Q_{U}=9.2775 \mathrm{kips}$
Allowable load:

$$
Q=\frac{Q_{U}}{F . S}=\frac{9.2775}{3}=3.0925 \mathrm{kips} \quad Q=3.09 \mathrm{kips}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.38
Link $B C$ is 6 mm thick, has a width $w=25 \mathrm{~mm}$, and is made of a steel with
a 480-MPa ultimate strength in tension. What was the safety factor used if the
structure shown was designed to support a 16-kN load \mathbf{P} ?

SOLUTION

Use bar $A C D$ as a free body and note that member $B C$ is a two-force member.

$$
\begin{aligned}
& \Sigma M_{A}=0: \\
& (480) F_{B C}-(600) P=0 \\
& F_{B C}=\frac{600}{480} P=\frac{(600)\left(16 \times 10^{3}\right)}{480}=20 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Ultimate load for member $B C$: $\quad F_{U}=\sigma_{U} A$

$$
F_{U}=\left(480 \times 10^{6}\right)(0.006)(0.025)=72 \times 10^{3} \mathrm{~N}
$$

Factor of safety:

$$
\text { F.S. }=\frac{F_{U}}{F_{B C}}=\frac{72 \times 10^{3}}{20 \times 10^{3}}
$$

$$
\text { F.S. }=3.60
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.39

Link $B C$ is 6 mm thick and is made of a steel with a $450-\mathrm{MPa}$ ultimate strength in tension. What should be its width w if the structure shown is being designed to support a $20-\mathrm{kN}$ load \mathbf{P} with a factor of safety of 3 ?

SOLUTION

Use bar $A C D$ as a free body and note that member $B C$ is a two-force member.

$$
\begin{aligned}
& \Sigma M_{A}=0: \\
& (480) F_{B C}-600 P=0 \\
& F_{B C}=\frac{600 P}{480}=\frac{(600)\left(20 \times 10^{3}\right)}{480}=25 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

For a factor of safety F.S. $=3$, the ultimate load of member $B C$ is

$$
F_{U}=(\text { F.S. })\left(F_{B C}\right)=(3)\left(25 \times 10^{3}\right)=75 \times 10^{3} \mathrm{~N}
$$

But $F_{U}=\sigma_{U} A \quad \therefore \quad A=\frac{F_{U}}{\sigma_{U}}=\frac{75 \times 10^{3}}{450 \times 10^{6}}=166.667 \times 10^{-6} \mathrm{~m}^{2}$
For a rectangular section, $A=w t$ or $w=\frac{A}{t}=\frac{166.667 \times 10^{-6}}{0.006}=27.778 \times 10^{-3} \mathrm{~m}$

Full file at https://TestbankDirect.eu/

SOLUTION

Length of member $A B$:
$\ell_{A B}=\sqrt{0.75^{2}+0.4^{2}}=0.85 \mathrm{~m}$
Use entire truss as a free body.

$$
\begin{gathered}
+\Sigma M_{c}=0: \quad 1.4 A_{x}-(0.75)(28)=0 \\
A_{x}=15 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0: \quad A_{y}-28=0 \\
A_{y}=28 \mathrm{kN}
\end{gathered}
$$

Use Joint A as free body.

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad \frac{0.75}{0.85} F_{A B}-A_{x}=0 \\
F_{A B}=\frac{(0.85)(15)}{0.75}=17 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0: \quad A_{y}-F_{A C}-\frac{0.4}{0.85} F_{A B}=0 \\
F_{A C}=28-\frac{(0.4)(17)}{0.85}=20 \mathrm{kN}
\end{gathered}
$$

For the test bar,

$$
A=(0.020)^{2}=400 \times 10^{-6} \mathrm{~m}^{2} \quad P_{U}=120 \times 10^{3} \mathrm{~N}
$$

For the material,

$$
\sigma_{U}=\frac{P_{U}}{A}=\frac{120 \times 10^{3}}{400 \times 10^{-6}}=300 \times 10^{6} \mathrm{~Pa}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.40 (Continued)

(a) For member $A B: \quad$ F.S. $=\frac{P_{U}}{F_{A B}}=\frac{\sigma_{U} A_{A B}}{F_{A B}}$

$$
A_{A B}=\frac{(\mathrm{F} . \mathrm{S} .) F_{A B}}{\sigma_{U}}=\frac{(3.2)\left(17 \times 10^{3}\right)}{300 \times 10^{6}}=181.333 \times 10^{-6} \mathrm{~m}^{2} \quad A_{A B}=181.3 \mathrm{~mm}^{2}
$$

(b) For member $A C: \quad$ F.S. $=\frac{P_{U}}{F_{A C}}=\frac{\sigma_{U} A_{A C}}{F_{A C}}$

$$
A_{A C}=\frac{(\mathrm{F} . \mathrm{S} .) F_{A C}}{\sigma_{U}}=\frac{(3.2)\left(20 \times 10^{3}\right)}{300 \times 10^{6}}=213.33 \times 10^{-6} \mathrm{~m}^{2} \quad A_{A C}=213 \mathrm{~mm}^{2}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Length of member $A B$:
$\ell_{A B}=\sqrt{0.75^{2}+0.4^{2}}=0.85 \mathrm{~m}$
Use entire truss as a free body.

$$
\begin{gathered}
+\Sigma M_{c}=0: \quad 1.4 A_{x}-(0.75)(28)=0 \\
A_{x}=15 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0: \quad A_{y}-28=0 \\
A_{y}=28 \mathrm{kN}
\end{gathered}
$$

Use Joint A as free body.

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad \frac{0.75}{0.85} F_{A B}-A_{x}=0 \\
F_{A B}=\frac{(0.85)(15)}{0.75}=17 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0: \quad A_{y}-F_{A C}-\frac{0.4}{0.85} F_{A B}=0 \\
F_{A C}=28-\frac{(0.4)(17)}{0.85}=20 \mathrm{kN}
\end{gathered}
$$

For the test bar,

$$
A=(0.020)^{2}=400 \times 10^{-6} \mathrm{~m}^{2} \quad P_{U}=120 \times 10^{3} \mathrm{~N}
$$

For the material,

$$
\sigma_{U}=\frac{P_{U}}{A}=\frac{120 \times 10^{3}}{400 \times 10^{-6}}=300 \times 10^{6} \mathrm{~Pa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.41 (Continued)

(a) For bar $A B: \quad$ F.S. $=\frac{F_{U}}{F_{A B}}=\frac{\sigma_{U} A_{A B}}{F_{A B}}=\frac{\left(300 \times 10^{6}\right)\left(225 \times 10^{-6}\right)}{17 \times 10^{3}}$

$$
\text { F.S. }=3.97
$$

(b) For bar $A C: \quad$ F.S. $=\frac{F_{U}}{F_{A C}}=\frac{\sigma_{U} A_{A C}}{F_{A C}}$

$$
A_{A C}=\frac{(\mathrm{F} . \mathrm{S} .) F_{A C}}{\sigma_{U}}=\frac{(3.97)\left(20 \times 10^{3}\right)}{300 \times 10^{6}}=264.67 \times 10^{-6} \mathrm{~m}^{2} \quad A_{A C}=265 \mathrm{~mm}^{2} \varangle
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.42

Link $A B$ is to be made of a steel for which the ultimate normal stress is 65 ksi . Determine the cross-sectional area of $A B$ for which the factor of safety will be 3.20 . Assume that the link will be adequately reinforced around the pins at A and B.

SOLUTION

$$
\begin{aligned}
& P=(4.2)(0.6)=2.52 \mathrm{kips} \\
&+\Sigma M_{D}=0: \quad-(2.8)\left(F_{A B} \sin 35^{\circ}\right) \\
&+(0.7)(2.52)+(1.4)(5)=0 \\
& F_{A B}= 5.4570 \mathrm{kips} \\
& \sigma_{A B}=\frac{F_{A B}}{A_{A B}}=\frac{\sigma_{\mathrm{ult}}}{F . S .} \\
& A_{A B}=\frac{(F . S .) F_{A B}}{\sigma_{\mathrm{ult}}}=\frac{(3.20)(5.4570 \mathrm{kips})}{65 \mathrm{ksi}^{2}} \\
&=0.26854 \mathrm{in}^{2}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.43

Two wooden members are joined by plywood splice plates that are fully glued on the contact surfaces. Knowing that the clearance between the ends of the members is 6 mm and that the ultimate shearing stress in the glued joint is 2.5 MPa , determine the length L for which the factor of safety is 2.75 for the loading shown.

SOLUTION

$$
\tau_{\mathrm{all}}=\frac{2.5 \mathrm{MPa}}{2.75}=0.90909 \mathrm{MPa}
$$

On one face of the upper contact surface,

$$
A=\frac{L-0.006 \mathrm{~m}}{2}(0.125 \mathrm{~m})
$$

Since there are 2 contact surfaces,

$$
\begin{aligned}
\tau_{\text {all }} & =\frac{P}{2 A} \\
0.90909 \times 10^{6} & =\frac{16 \times 10^{3}}{(L-0.006)(0.125)} \\
L & =0.14680 \mathrm{~m}
\end{aligned}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Area of one face of upper contact surface:

$$
\begin{aligned}
& A=\frac{0.180 \mathrm{~m}-0.006 \mathrm{~m}}{2}(0.125 \mathrm{~m}) \\
& A=10.8750 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

Since there are two surfaces,

$$
\begin{aligned}
\tau_{\text {all }} & =\frac{P}{2 A}=\frac{16 \times 10^{3} \mathrm{~N}}{2\left(10.8750 \times 10^{-3} \mathrm{~m}^{2}\right)} \\
\tau_{\text {all }} & =0.73563 \mathrm{MPa} \\
\text { F.S. } & =\frac{\tau_{u}}{\tau_{\text {all }}}=\frac{2.5 \mathrm{MPa}}{0.73563 \mathrm{MPa}}=3.40
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.45

Three $\frac{3}{4}$-in.-diameter steel bolts are to be used to attach the steel plate shown to a wooden beam. Knowing that the plate will support a load $P=24$ kips and that the ultimate shearing stress for the steel used is 52 ksi , determine the factor of safety for this design.

SOLUTION

For each bolt,

$$
\begin{aligned}
A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}\left(\frac{3}{4}\right)^{2}=0.44179 \mathrm{in}^{2} \\
P_{U} & =A \tau_{U}=(0.44179)(52) \\
& =22.973 \mathrm{kips}
\end{aligned}
$$

For the three bolts, $\quad P_{U}=(3)(22.973)=68.919$ kips

Factor of safety:

$$
F . S .=\frac{P_{U}}{P}=\frac{68.919}{24}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.46
Three steel bolts are to be used to attach the steel plate shown to a wooden beam.
Knowing that the plate will support a load $P=28$ kips, that the ultimate shearing
stress for the steel used is 52 ksi, and that a factor of safety of 3.25 is desired,
determine the required diameter of the bolts.

SOLUTION

For each bolt,

$$
P=\frac{24}{3}=8 \mathrm{kips}
$$

Required:
$P_{U}=(F . S) P=.(3.25)(8.0)=26.0 \mathrm{kips}$
$\tau_{U}=\frac{P_{U}}{A}=\frac{P_{U}}{\frac{\pi}{4} d^{2}}=\frac{4 P_{U}}{\pi d^{2}}$
$d=\sqrt{\frac{4 P_{U}}{\pi \tau_{U}}}=\sqrt{\frac{(4)(26.0)}{\pi(52)}}=0.79789 \mathrm{in} . \quad d=0.798 \mathrm{in}$.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.47

A load \mathbf{P} is supported as shown by a steel pin that has been inserted in a short wooden member hanging from the ceiling. The ultimate strength of the wood used is 60 MPa in tension and 7.5 MPa in shear, while the ultimate strength of the steel is 145 MPa in shear. Knowing that $b=40 \mathrm{~mm}, c=55 \mathrm{~mm}$, and $d=12 \mathrm{~mm}$, determine the load \mathbf{P} if an overall factor of safety of 3.2 is desired.

SOLUTION

Based on double shear in pin,

$$
\begin{aligned}
P_{U} & =2 A \tau_{U}=2 \frac{\pi}{4} d^{2} \tau_{U} \\
& =\frac{\pi}{4}(2)(0.012)^{2}\left(145 \times 10^{6}\right)=32.80 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on tension in wood,

$$
\begin{aligned}
P_{U} & =A \sigma_{U}=w(b-d) \sigma_{U} \\
& =(0.040)(0.040-0.012)\left(60 \times 10^{6}\right) \\
& =67.2 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on double shear in the wood,

$$
\begin{aligned}
P_{U} & =2 A \tau_{U}=2 w c \tau_{U}=(2)(0.040)(0.055)\left(7.5 \times 10^{6}\right) \\
& =33.0 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Use smallest

$$
P_{U}=32.8 \times 10^{3} \mathrm{~N}
$$

Allowable:

$$
P=\frac{P_{U}}{F . S .}=\frac{32.8 \times 10^{3}}{3.2}=10.25 \times 10^{3} \mathrm{~N}
$$

$$
10.25 \mathrm{kN}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.48

For the support of Prob. 1.47, knowing that the diameter of the pin is $d=16 \mathrm{~mm}$ and that the magnitude of the load is $P=20 \mathrm{kN}$, determine (a) the factor of safety for the pin, (b) the required values of b and c if the factor of safety for the wooden members is the same as that found in part a for the pin.

PROBLEM 1.47 A load \mathbf{P} is supported as shown by a steel pin that has been inserted in a short wooden member hanging from the ceiling. The ultimate strength of the wood used is 60 MPa in tension and 7.5 MPa in shear, while the ultimate strength of the steel is 145 MPa in shear. Knowing that $b=40 \mathrm{~mm}, c=55 \mathrm{~mm}$, and $d=12 \mathrm{~mm}$, determine the $\operatorname{load} \mathbf{P}$ if an overall factor of safety of 3.2 is desired.

SOLUTION

(a) Pin:

$$
P=20 \mathrm{kN}=20 \times 10^{3} \mathrm{~N}
$$

$$
A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.016)^{2}=2.01 .06 \times 10^{-6} \mathrm{~m}^{2}
$$

Double shear:

$$
\tau=\frac{P}{2 A} \quad \tau_{U}=\frac{P_{U}}{2 A}
$$

$$
P_{U}=2 A \tau_{U}=(2)\left(201.16 \times 10^{-6}\right)\left(145 \times 10^{6}\right)=58.336 \times 10^{3} \mathrm{~N}
$$

$$
F . S .=\frac{P_{U}}{P}=\frac{58.336 \times 10^{3}}{20 \times 10^{3}}
$$

$$
F . S .=2.92
$$

(b) Tension in wood: $\quad P_{U}=58.336 \times 10^{3} \mathrm{~N}$ for same F.S.

$$
\sigma_{U}=\frac{P_{U}}{A}=\frac{P_{U}}{w(b-d)} \quad \text { where } \quad w=40 \mathrm{~mm}=0.040 \mathrm{~m}
$$

$b=d+\frac{P_{U}}{w \sigma_{U}}=0.016+\frac{58.336 \times 10^{3}}{(0.040)\left(60 \times 10^{6}\right)}=40.3 \times 10^{-3} \mathrm{~m} \quad b=40.3 \mathrm{~mm}$
Shear in wood: $\quad P_{U}=58.336 \times 10^{3} \mathrm{~N}$ for same F.S.
Double shear: each area is $A=w c \quad \tau_{U}=\frac{P_{U}}{2 A}=\frac{P_{U}}{2 w c}$
$c=\frac{P_{U}}{2 w \tau_{U}}=\frac{58.336 \times 10^{3}}{(2)(0.040)\left(7.5 \times 10^{6}\right)}=97.2 \times 10^{-3} \mathrm{~m} \quad c=97.2 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Based on tension in plate,

Solving for a,

$$
a=d+\frac{(F . S .) P}{\sigma_{U} t}=\frac{3}{4}+\frac{(3.60)(2.5)}{(36)\left(\frac{1}{4}\right)}
$$

(a) $a=1.750 \mathrm{in}$.

Based on shear between plate and concrete slab,

$$
\begin{aligned}
& A=\text { perimeter } \times \text { depth }=2(a+t) b \quad \tau_{U}=0.300 \mathrm{ksi} \\
& P_{U}=\tau_{U} A=2 \tau_{U}(a+t) b \quad \text { F.S. }=\frac{P_{U}}{P}
\end{aligned}
$$

Solving for b,

$$
b=\frac{(F . S .) P}{2(a+t) \tau_{U}}=\frac{(3.6)(2.5)}{(2)\left(1.75+\frac{1}{4}\right)(0.300)}
$$

(b) $b=7.50 \mathrm{in}$.

Full file at https://TestbankDirect.eu/

SOLUTION

Based on tension in plate,

$$
\begin{aligned}
A & =(a-d) t \\
& =\left(2-\frac{3}{4}\right)\left(\frac{1}{4}\right)=0.31250 \mathrm{in}^{2} \\
2.5 \text { kips } P_{U} & =\sigma_{U} A \\
& =(36)(0.31250)=11.2500 \mathrm{kip} \\
\text { F.S. } & =\frac{P_{U}}{P}=\frac{11.2500}{3.5}=4.50
\end{aligned}
$$

Based on shear between plate and concrete slab,

$$
\begin{aligned}
A & =\text { perimeter } \times \text { depth }=2(a+t) b=2\left(2+\frac{1}{4}\right)(6.0) \\
A & =27.0 \mathrm{in}^{2} \quad \tau_{U}=0.300 \mathrm{ksi} \\
P_{U} & =\tau_{U} A=(0.300)(27.0)=8.10 \mathrm{kips} \\
\text { F.S. } & =\frac{P_{U}}{P}=\frac{8.10}{2.5}=3.240
\end{aligned}
$$

Actual factor of safety is the smaller value.
F.S. $=3.24$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.51

Link $A C$ is made of a steel with a $65-\mathrm{ksi}$ ultimate normal stress and has a $\frac{1}{4} \times \frac{1}{2}$-in. uniform rectangular cross section. It is connected to a support at A and to member $B C D$ at C by $\frac{3}{4}$-in.-diameter pins, while member $B C D$ is connected to its support at B by a $\frac{5}{16}$-in.-diameter pin. All of the pins are made of a steel with a 25 -ksi ultimate shearing stress and are in single shear. Knowing that a factor of safety of 3.25 is desired, determine the largest load \mathbf{P} that can be applied at D. Note that link $A C$ is not reinforced around the pin holes.

SOLUTION

Use free body $B C D$.

$$
\begin{align*}
& \begin{array}{r}
+) M_{B}=0: \quad(6)\left(\frac{8}{10} F_{A C}\right)-10 P=0 \\
P=0.48 F_{A C}
\end{array} \\
& B_{x}=\frac{6}{10} F_{A C}=1.25 P \longrightarrow \tag{1}\\
& +\Sigma F_{x}=0: \quad B_{x}-\frac{6}{10} F_{A C}=0
\end{align*}
$$

Shear in pins at A and C.

$$
F_{A C}=\tau A_{\mathrm{pin}}=\frac{\tau_{U}}{F . S .} \frac{\pi}{4} d^{2}=\left(\frac{25}{3.25}\right)\left(\frac{\pi}{4}\right)\left(\frac{3}{8}\right)^{2}=0.84959 \mathrm{kips}
$$

Tension on net section of A and C.

$$
F_{A C}=\sigma A_{\mathrm{net}}=\frac{\sigma_{U}}{F . S .} A_{\mathrm{net}}=\left(\frac{65}{3.25}\right)\left(\frac{1}{4}\right)\left(\frac{1}{2}-\frac{3}{8}\right)=0.625 \mathrm{kips}
$$

Smaller value of $F_{A C}$ is 0.625 kips.
From (1),

$$
P=(0.48)(0.625)=0.300 \mathrm{kips}
$$

Shear in pin at B.

$$
B=\tau A_{\mathrm{pin}}=\frac{\tau_{U}}{F . S .} \frac{\pi}{4} d^{2}=\left(\frac{25}{3.25}\right)\left(\frac{\pi}{4}\right)\left(\frac{5}{16}\right)^{2}=0.58999 \mathrm{kips}
$$

From (2),

$$
P=(0.70588)(0.58999)=0.416 \mathrm{kips}
$$

Allowable value of P is the smaller value. $\quad P=0.300 \mathrm{kips}$ or $\quad P=300 \mathrm{lb}$

Full file at https://TestbankDirect.eu/

SOLUTION

Use free body $B C D$.

$$
\begin{align*}
& +) M_{B}=0: \quad(6)\left(\frac{8}{10} F_{A C}\right)-10 P=0 \\
& P=0.48 F_{A C} \tag{1}\\
& +\uparrow \Sigma F_{y}=0: \quad B_{x}-\frac{6}{10} F_{A C}=0 \\
& B_{x}=\frac{6}{10} F_{A C}=1.25 P \longrightarrow \\
& \text { +) } M_{C}=0:-6 B_{y}-4 P=0 \\
& B_{y}=-\frac{2}{3} P \quad \text { i.e. } \quad B_{y}=\frac{2}{3} P \downarrow \\
& B=\sqrt{B_{x}^{2}+B_{y}^{2}}=\sqrt{1.25^{2}+\left(\frac{2}{3}\right)^{2}} P=1.41667 P \quad P=0.70583 B \tag{2}
\end{align*}
$$

$\underline{\text { Shear in pins at } A \text { and } C}$.

$$
F_{A C}=\tau A_{\mathrm{pin}}=\frac{\tau_{U}}{F . S .} \frac{\pi}{4} d^{2}=\left(\frac{25}{3.25}\right)\left(\frac{\pi}{4}\right)\left(\frac{5}{16}\right)^{2}=0.58999 \mathrm{kips}
$$

Tension on net section of A and C.

$$
F_{A C}=\sigma A_{\mathrm{net}}=\frac{\sigma_{U}}{F . S .} A_{\mathrm{net}}=\left(\frac{65}{3.25}\right)\left(\frac{1}{4}\right)\left(\frac{1}{2}-\frac{5}{16}\right)=0.9375 \mathrm{kips}
$$

Smaller value of $F_{A C}$ is 0.58999 kips.
From (1),

$$
P=(0.48)(0.58999)=0.283 \mathrm{kips}
$$

Shear in pin at B.

$$
B=\tau A_{\mathrm{pin}}=\frac{\tau_{U}}{F . S .4} \frac{\pi}{4} d^{2}=\left(\frac{25}{3.25}\right)\left(\frac{\pi}{4}\right)\left(\frac{5}{16}\right)^{2}=0.58999 \mathrm{kips}
$$

From (2),

$$
P=(0.70588)(0.58999)=0.416 \mathrm{kips}
$$

Allowable value of P is the smaller value. $\quad P=0.283$ kips \quad or $\quad P=283 \mathrm{lb}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

$$
\begin{aligned}
+\Sigma M_{E}=0: & 0.40 F_{C F}-(0.65)\left(24 \times 10^{3}\right)=0 \\
& F_{C F}=39 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on tension in links $C F$,

$$
\begin{aligned}
A & =(b-d) t=(0.040-0.02)(0.010)=200 \times 10^{-6} \mathrm{~m}^{2} \quad \text { (one link) } \\
F_{U} & =2 \sigma_{U} A=(2)\left(400 \times 10^{6}\right)\left(200 \times 10^{-6}\right)=160.0 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on double shear in pins,

Actual F_{U} is smaller value, i.e. $F_{U}=94.248 \times 10^{3} \mathrm{~N}$
Factor of safety:

$$
\text { F.S. }=\frac{F_{U}}{F_{C F}}=\frac{94.248 \times 10^{3}}{39 \times 10^{3}}
$$

$$
\text { FRS. }=2.42
$$

$$
\begin{aligned}
& A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.020)^{2}=314.16 \times 10^{-6} \mathrm{~m}^{2} \\
& F_{U}=2 \tau_{U} A=(2)\left(150 \times 10^{6}\right)\left(314.16 \times 10^{-6}\right)=94.248 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.54
Solve Prob. 1.53, assuming that the pins at C and F have been replaced
by pins with a 30-mm diameter.
PROBLEM 1.53 Each of the two vertical links $C F$ connecting the two
horizontal members $A D$ and $E G$ has a $10 \times 40-\mathrm{mm}$ uniform rectangular
cross section and is made of a steel with an ultimate strength in tension of
400 MPa , while each of the pins at C and F has a 20-mm diameter and
are made of a steel with an ultimate strength in shear of 150 MPa.
Determine the overall factor of safety for the links $C F$ and the pins
connecting them to the horizontal members.

SOLUTION

Use member $E F G$ as free body.

$$
\begin{aligned}
+\Sigma M_{E}=0: & 0.40 F_{C F}-(0.65)\left(24 \times 10^{3}\right)=0 \\
& F_{C F}=39 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on tension in links $C F$,

$$
\begin{aligned}
A & =(b-d) t=(0.040-0.030)(0.010)=100 \times 10^{-6} \mathrm{~m}^{2} \quad(\text { one link }) \\
F_{U} & =2 \sigma_{U} A=(2)\left(400 \times 10^{6}\right)\left(100 \times 10^{-6}\right)=80.0 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on double shear in pins,

$$
\begin{aligned}
A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.030)^{2}=706.86 \times 10^{-6} \mathrm{~m}^{2} \\
F_{U} & =2 \tau_{U} A=(2)\left(150 \times 10^{6}\right)\left(706.86 \times 10^{-6}\right)=212.06 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Actual F_{U} is smaller value, i.e. $F_{U}=80.0 \times 10^{3} \mathrm{~N}$
Factor of safety: \quad F.S. $=\frac{F_{U}}{F_{C F}}=\frac{80.0 \times 10^{3}}{39 \times 10^{3}}$
$F . S .=2.05$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Statics: Use $A B C$ as free body.

$$
\begin{array}{lll}
+\Sigma M_{B}=0: & 0.20 F_{A}-0.18 P=0 & P=\frac{10}{9} F_{A} \\
+\Sigma M_{A}=0: & 0.20 F_{B D}-0.38 P=0 & P=\frac{10}{19} F_{B D}
\end{array}
$$

Based on double shear in pin $A, A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.008)^{2}=50.266 \times 10^{-6} \mathrm{~m}^{2}$

$$
\begin{aligned}
F_{A} & =\frac{2 \tau_{U} A}{F . S .}=\frac{(2)\left(100 \times 10^{6}\right)\left(50.266 \times 10^{-6}\right)}{3.0}=3.351 \times 10^{3} \mathrm{~N} \\
P & =\frac{10}{9} F_{A}=3.72 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on double shear in pins at B and $D, A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.012)^{2}=113.10 \times 10^{-6} \mathrm{~m}^{2}$

$$
\begin{aligned}
F_{B D} & =\frac{2 \tau_{U} A}{F . S .}=\frac{(2)\left(100 \times 10^{6}\right)\left(113.10 \times 10^{-6}\right)}{3.0}=7.54 \times 10^{3} \mathrm{~N} \\
P & =\frac{10}{19} F_{B D}=3.97 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on compression in links $B D$, for one link, $A=(0.020)(0.008)=160 \times 10^{-6} \mathrm{~m}^{2}$

$$
\begin{aligned}
F_{B D} & =\frac{2 \sigma_{U} A}{F . S .}=\frac{(2)\left(250 \times 10^{6}\right)\left(160 \times 10^{-6}\right)}{3.0}=26.7 \times 10^{3} \mathrm{~N} \\
P & =\frac{10}{19} F_{B D}=14.04 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Allowable value of P is smallest, $\quad \therefore \quad P=3.72 \times 10^{3} \mathrm{~N}$ $P=3.72 \mathrm{kN}$

Full file at https://TestbankDirect.eu/

PROBLEM 1.56 | In an alternative design for the structure of |
| :--- |
| Prob. 1.55, a pin of 10-mm-diameter is to be |
| used at A. Assuming that all other |
| specifications remain unchanged, determine |
| the allowable load \mathbf{P} if an overall factor of |
| safety of 3.0 is desired. |

SOLUTION

Statics: Use $A B C$ as free body.

$$
\begin{array}{lll}
+\Sigma M_{B}=0: & 0.20 F_{A}-0.18 P=0 & P=\frac{10}{9} F_{A} \\
+\Sigma M_{A}=0: & 0.20 F_{B D}-0.38 P=0 & P=\frac{10}{19} F_{B D}
\end{array}
$$

Based on double shear in pin $A, \quad A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.010)^{2}=78.54 \times 10^{-6} \mathrm{~m}^{2}$

$$
\begin{aligned}
F_{A} & =\frac{2 \tau_{U} A}{F . S .}=\frac{(2)\left(100 \times 10^{6}\right)\left(78.54 \times 10^{-6}\right)}{3.0}=5.236 \times 10^{3} \mathrm{~N} \\
P & =\frac{10}{9} F_{A}
\end{aligned}=5.82 \times 10^{3} \mathrm{~N}
$$

Based on double shear in pins at B and $D, \quad A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.012)^{2}=113.10 \times 10^{-6} \mathrm{~m}^{2}$

$$
\begin{aligned}
F_{B D} & =\frac{2 \tau_{U} A}{F . S .}=\frac{(2)\left(100 \times 10^{6}\right)\left(113.10 \times 10^{-6}\right)}{3.0}=7.54 \times 10^{3} \mathrm{~N} \\
P & =\frac{10}{19} F_{B D}=3.97 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Based on compression in links $B D$, for one link, $A=(0.020)(0.008)=160 \times 10^{-6} \mathrm{~m}^{2}$

$$
\begin{aligned}
F_{B D} & =\frac{2 \sigma_{U} A}{F . S .}=\frac{(2)\left(250 \times 10^{6}\right)\left(160 \times 10^{-6}\right)}{3.0}=26.7 \times 10^{3} \mathrm{~N} \\
P & =\frac{10}{19} F_{B D}=14.04 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Allowable value of P is smallest, $\therefore P=3.97 \times 10^{3} \mathrm{~N}$

$$
P=3.97 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

$$
\begin{aligned}
+\Sigma M_{A} & =0: \quad(2.4) \frac{3}{5} P-2.4 W_{1}-1.2 W_{2} \\
\therefore \quad P & =\frac{5}{3} W_{1}+\frac{5}{6} W_{2}
\end{aligned}
$$

For dead loading, $\quad W_{1}=(40)(9.81)=392.4 \mathrm{~N}, W_{2}=(50)(9.81)=490.5 \mathrm{~N}$

$$
P_{D}=\left(\frac{5}{3}\right)(392.4)+\left(\frac{5}{6}\right)(490.5)=1.0628 \times 10^{3} \mathrm{~N}
$$

For live loading, $\quad W_{1}=m g \quad W_{2}=0 \quad P_{L}=\frac{5}{3} m g$
From which $\quad m=\frac{3}{5} \frac{P_{L}}{g}$
Design criterion: $\quad \gamma_{D} P_{D}+\gamma_{L} P_{L}=\phi P_{U}$

$$
\begin{aligned}
P_{L} & =\frac{\phi P_{U}-\gamma_{D} P_{D}}{\gamma_{L}}=\frac{(0.90)\left(12 \times 10^{3}\right)-(1.25)\left(1.0628 \times 10^{-3}\right)}{1.6} \\
& =5.920 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

(a) Allowable load. $\quad m=\frac{3}{5} \frac{5.92 \times 10^{3}}{9.81}$

$$
m=362 \mathrm{~kg}
$$

Conventional factor of safety:

$$
P=P_{D}+P_{L}=1.0628 \times 10^{3}+5.920 \times 10^{3}=6.983 \times 10^{3} \mathrm{~N}
$$

$$
\begin{equation*}
\text { F.S. }=\frac{P_{U}}{P}=\frac{12 \times 10^{3}}{6.983 \times 10^{3}} \tag{b}
\end{equation*}
$$

$$
\text { F.S. }=1.718
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.58

The Load and Resistance Factor Design method is to be used to select the two cables that will raise and lower a platform supporting two window washers. The platform weighs 160 lb and each of the window washers is assumed to weigh 195 lb with equipment. Since these workers are free to move on the platform, 75% of their total weight and the weight of their equipment will be used as the design live load of each cable. (a) Assuming a resistance factor $\phi=0.85$ and load factors $\gamma_{D}=1.2$ and $\gamma_{L}=1.5$, determine the required minimum ultimate load of one cable. (b) What is the corresponding conventional factor of safety for the selected cables?

SOLUTION

$$
\gamma_{D} P_{D}+\gamma_{L} P_{L}=\phi P_{U}
$$

(a) $P_{U}=\frac{\gamma_{D} P_{D}+\gamma_{L} P_{L}}{\phi}$

$$
=\frac{(1.2)\left(\frac{1}{2} \times 160\right)+(1.5)\left(\frac{3}{4} \times 2 \times 195\right)}{0.85}
$$

$$
P_{U}=629 \mathrm{lb}
$$

Conventional factor of safety:

$$
P=P_{D}+P_{L}=\frac{1}{2} \times 160+0.75 \times 2 \times 195=372.5 \mathrm{lb}
$$

(b) \quad F.S. $=\frac{P_{U}}{P}=\frac{629}{372.5}$

$$
\text { F.S. }=1.689
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.59

In the marine crane shown, link $C D$ is known to have a uniform cross section of $50 \times 150 \mathrm{~mm}$. For the loading shown, determine" the normal stress in the central portion of that link.

SOLUTION

Weight of loading:

$$
W=(80 \mathrm{Mg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=784.8 \mathrm{kN}
$$

Free Body: Portion $A B C$.

$$
\begin{aligned}
+) \sum M_{A}=0: & F_{C D}(15 \mathrm{~m})-W(28 \mathrm{~m})=0 \\
& F_{C D}=\frac{28}{15} W=\frac{28}{15}(784.8 \mathrm{kN}) \\
& F_{C D}=+1465 \mathrm{kN}
\end{aligned}
$$

$$
\sigma_{C D}=\frac{F_{C D}}{A}=\frac{+1465 \times 10^{3} \mathrm{~N}}{(0.050 \mathrm{~m})(0.150 \mathrm{~m})}=+195.3 \times 10^{6} \mathrm{~Pa}
$$

$$
\sigma_{C D}=+195.3 \mathrm{MPa}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Use joint B as free body.

Force triangle
Law of Sines:

$$
\begin{aligned}
\frac{F_{A B}}{\sin 45^{\circ}} & =\frac{F_{B C}}{\sin 60^{\circ}}=\frac{10}{\sin 95^{\circ}} \\
F_{A B} & =7.3205 \mathrm{kips} \\
F_{B C} & =8.9658 \mathrm{kips}
\end{aligned}
$$

Link $A B$ is a tension member.
Minimum section at pin: $A_{\text {net }}=(1.8-0.8)(0.5)=0.5 \mathrm{in}^{2}$
(a) Stress in $A B: \quad \sigma_{A B}=\frac{F_{A B}}{A_{\mathrm{net}}}=\frac{7.3205}{0.5} \quad \sigma_{A B}=14.64 \mathrm{ksi}$

Link $B C$ is a compression member.
Cross sectional area is $A=(1.8)(0.5)=0.9 \mathrm{in}^{2}$
(b) Stress in $B C: \quad \sigma_{B C}=\frac{-F_{B C}}{A}=\frac{-8.9658}{0.9} \quad \sigma_{B C}=-9.96 \mathrm{ksi}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Use joint B as free body.

Law of Sines:

$$
\frac{F_{A B}}{\sin 45^{\circ}}=\frac{F_{B C}}{\sin 60^{\circ}}=\frac{10}{\sin 95^{\circ}} \quad F_{B C}=8.9658 \mathrm{kips}
$$

(a) Shearing stress in pin at $C . \quad \tau=\frac{F_{B C}}{2 A_{P}}$

$$
\begin{array}{rlr}
A_{P} & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.8)^{2}=0.5026 \mathrm{in}^{2} & \\
\tau & =\frac{8.9658}{(2)(0.5026)}=8.92 & \tau=8.92 \mathrm{ksi}
\end{array}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.61 (Continued)

(b) Bearing stress at C in member $B C . \quad \sigma_{b}=\frac{F_{B C}}{A}$

$$
\begin{array}{rlr}
A & =t d=(0.5)(0.8)=0.4 \mathrm{in}^{2} & \\
\sigma_{b} & =\frac{8.9658}{0.4}=22.4 & \sigma_{b}=22.4 \mathrm{ksi}
\end{array}
$$

(c) Bearing stress at B in member $B C . \quad \sigma_{b}=\frac{F_{B C}}{A}$

$$
\begin{aligned}
A & =2 t d=2(0.5)(0.8)=0.8 \mathrm{in}^{2} \\
\sigma_{b} & =\frac{8.9658}{0.8}=11.21
\end{aligned}
$$

$$
\sigma_{b}=11.21 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

At each bolt location the upper plate is pulled down by the tensile force P_{b} of the bolt. At the same time, the spacer pushes that plate upward with a compressive force P_{s} in order to maintain equilibrium.

$$
P_{b}=P_{s}
$$

For the bolt, $\quad \sigma_{b}=\frac{F_{b}}{A_{b}}=\frac{4 P_{b}}{\pi d_{b}^{2}} \quad$ or $\quad P_{b}=\frac{\pi}{4} \sigma_{b} d_{b}^{2}$
For the spacer, $\quad \sigma_{s}=\frac{P_{s}}{A_{s}}=\frac{4 P_{s}}{\pi\left(d_{s}^{2}-d_{b}^{2}\right)} \quad$ or $\quad P_{s}=\frac{\pi}{4} \sigma_{s}\left(d_{s}^{2}-d_{b}^{2}\right)$

Equating P_{b} and P_{s},

$$
\begin{aligned}
\frac{\pi}{4} \sigma_{b} d_{b}^{2} & =\frac{\pi}{4} \sigma_{s}\left(d_{s}^{2}-d_{b}^{2}\right) \\
d_{s} & =\sqrt{\left(1+\frac{\sigma_{b}}{\sigma_{s}}\right)} d_{b}=\sqrt{\left(1+\frac{200}{130}\right)}(16) \quad d_{s}=25.2 \mathrm{~mm}
\end{aligned}
$$

Full file at https://TestbankDirect.eu/

SOLUTION

Use piston, rod, and crank together as free body. Add wall reaction H and bearing reactions A_{x} and A_{y}.

$$
\begin{aligned}
+\Sigma \Sigma M_{A} & =0: \quad(0.280 \mathrm{~m}) H-1500 \mathrm{~N} \cdot \mathrm{~m}=0 \\
H & =5.3571 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Use piston alone as free body. Note that rod is a two-force member; hence the direction of force $F_{B C}$ is known. Draw the force triangle and solve for P and $F_{B E}$ by proportions.

$$
\begin{aligned}
l & =\sqrt{200^{2}+60^{2}}=208.81 \mathrm{~mm} \\
\frac{P}{H} & =\frac{200}{60} \quad \therefore \quad P=17.86 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

(a) $P=17.86 \mathrm{kN}$

$$
\frac{F_{B C}}{H}=\frac{208.81}{60} \quad \therefore \quad F_{B C}=18.6436 \times 10^{3} \mathrm{~N}
$$

$\operatorname{Rod} B C$ is a compression member. Its area is

$$
450 \mathrm{~mm}^{2}=450 \times 10^{-6} \mathrm{~m}^{2}
$$

Stress:

$$
\sigma_{B C}=\frac{-F_{B C}}{A}=\frac{-18.6436 \times 10^{3}}{450 \times 10^{-6}}=-41.430 \times 10^{6} \mathrm{~Pa}
$$

(b) $\quad \sigma_{B C}=-41.4 \mathrm{MPa}$

Full file at https://TestbankDirect.eu/

PROBLEM 1.64

Knowing that the link $D E$ is $\frac{1}{8}$ in. thick and 1 in . wide, determine the normal stress in the central portion of that link when (a) $\theta=0^{\circ}$, (b) $\theta=90^{\circ}$.

SOLUTION

Use member $C E F$ as a free body.

$+\Sigma M_{C}=0:-12 F_{D E}-(8)(60 \sin \theta)-(16)(60 \cos \theta)=0$
$F_{D E}=-40 \sin \theta-80 \cos \theta \mathrm{lb}$
$A_{D E}=(1)\left(\frac{1}{8}\right)=0.125 \mathrm{in}^{2}$
$\sigma_{D E}=\frac{F_{D E}}{A_{D E}}$
(a) $\quad \underline{\theta=0}: \quad F_{D E}=-80 \mathrm{lb}$

$$
\sigma_{D E}=\frac{-80}{0.125}
$$

$$
\sigma_{D E}=-640 \mathrm{psi}
$$

(b) $\quad \underline{\theta=90^{\circ}}: \quad F_{D E}=-40 \mathrm{lb}$

$$
\sigma_{D E}=\frac{-40}{0.125}
$$

$$
\sigma_{D E}=-320 \mathrm{psi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

(a) Maximum normal stress in the wood.

$$
\begin{array}{rlr}
A_{\mathrm{net}} & =(1)\left(4-\frac{5}{8}\right)=3.375 \mathrm{in}^{2} & \\
\sigma & =\frac{P}{A_{\mathrm{net}}}=\frac{1500}{3.375}=444 \mathrm{psi} & \sigma=444 \mathrm{psi}
\end{array}
$$

(b) Distance b for $\tau=100 \mathrm{psi}$.

For sheared area see dotted lines.

$$
\begin{aligned}
\tau & =\frac{P}{A}=\frac{P}{2 b t} \\
b & =\frac{P}{2 t \tau}=\frac{1500}{(2)(1)(100)}=7.50 \mathrm{in} .
\end{aligned}
$$

(c) Average bearing stress on the wood.

$$
\sigma_{b}=\frac{P}{A_{b}}=\frac{P}{d t}=\frac{1500}{\left(\frac{5}{8}\right)(1)}=2400 \mathrm{psi}
$$

$$
\sigma_{b}=2400 \mathrm{psi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.66

In the steel structure shown, a $6-\mathrm{mm}$ diameter pin is used at C and $10-\mathrm{mm}$ diameter pins are used at B and D. The ultimate shearing stress is 150 MPa at all connections, and the ultimate normal stress is 400 MPa in link $B D$. Knowing that a factor of safety of 3.0 is desired, determine the largest load \mathbf{P} that can be applied at A. Note that link $B D$ is not reinforced around the pin holes.

SOLUTION

Use free body $A B C$.

$$
\begin{align*}
+\Sigma M_{C}=0: 0.280 P-0.120 F_{B D} & =0 \\
P & =\frac{3}{7} F_{B D} \tag{1}\\
+\Sigma M_{B}=0: 0.160 P-0.120 C & =0 \\
P & =\frac{3}{4} C \tag{2}
\end{align*}
$$

Tension on net section of link $B D$:

$$
F_{B D}=\sigma A_{\mathrm{net}}=\frac{\sigma_{U}}{F . S .} A_{\mathrm{net}}=\left(\frac{400 \times 10^{6}}{3}\right)\left(6 \times 10^{-3}\right)(18-10)\left(10^{-3}\right)=6.40 \times 10^{3} \mathrm{~N}
$$

Shear in pins at B and D :

$$
F_{B D}=\tau A_{\mathrm{pin}}=\frac{\tau_{U}}{F . S .} \frac{\pi}{4} d^{2}=\left(\frac{150 \times 10^{6}}{3}\right)\left(\frac{\pi}{4}\right)\left(10 \times 10^{-3}\right)^{2}=3.9270 \times 10^{3} \mathrm{~N}
$$

Smaller value of $F_{B D}$ is $3.9270 \times 10^{3} \mathrm{~N}$.
From (1),

$$
P=\left(\frac{3}{7}\right)\left(3.9270 \times 10^{3}\right)=1.683 \times 10^{3} \mathrm{~N}
$$

Shear in pin at $C: \quad C=2 \tau A_{\text {pin }}=2 \frac{\tau_{U}}{F . S .} \frac{\pi}{4} d^{2}=(2)\left(\frac{150 \times 10^{6}}{3}\right)\left(\frac{\pi}{4}\right)\left(6 \times 10^{-3}\right)^{2}=2.8274 \times 10^{3} \mathrm{~N}$
From (2), $\quad P=\left(\frac{3}{4}\right)\left(2.8274 \times 10^{3}\right)=2.12 \times 10^{3} \mathrm{~N}$
Smaller value of P is allowable value.

$$
P=1.683 \times 10^{3} \mathrm{~N}
$$

$$
P=1.683 \mathrm{kN}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.67

Member $A B C$, which is supported by a pin and bracket at C and a cable $B D$, was designed to support the $16-\mathrm{kN}$ load \mathbf{P} as shown. Knowing that the ultimate load for cable $B D$ is 100 kN , determine the factor of safety with respect to cable failure.

SOLUTION

Use member $A B C$ as a free body, and note that member $B D$ is a two-force member.

$$
\left.\begin{array}{rl}
+\Sigma \Sigma M_{c}=0: \quad\left(P \cos 40^{\circ}\right)(1.2) & +\left(P \sin 40^{\circ}\right)(0.6) \\
& -\left(F_{B D} \cos 30^{\circ}\right)(0.6) \\
& -\left(F_{B D} \sin 30^{\circ}\right)(0.4)=0 \\
1.30493 P-0.71962 F_{B D}=0
\end{array}\right] \begin{aligned}
F_{B D} & =1.81335 P=(1.81335)\left(16 \times 10^{3}\right)=29.014 \times 10^{3} \mathrm{~N} \\
F_{U} & =100 \times 10^{3} \mathrm{~N} \\
F . S . & =\frac{F_{U}}{F_{B D}}=\frac{100 \times 10^{3}}{29.014 \times 10^{3}}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

For shear,

$$
\begin{aligned}
& A=\pi d L \\
& P=\tau_{\mathrm{all}} A=\tau_{\mathrm{all}} \tau d L
\end{aligned}
$$

For tension,

$$
\begin{aligned}
& A=\frac{\pi}{4} d^{2} \\
& P=\sigma_{\mathrm{all}} A=\sigma_{\mathrm{all}}\left(\frac{\pi}{4} d^{2}\right)
\end{aligned}
$$

Equating, $\quad \tau_{\text {all }} \pi d L=\sigma_{\text {all }} \frac{\pi}{4} d^{2}$
Solving for L,

$$
L_{\min }=\sigma_{\mathrm{all}} d / 4 \tau_{\mathrm{all}}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.69

The two portions of member $A B$ are glued together along a plane forming an angle θ with the horizontal. Knowing that the ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi in shear, determine (a) the value of θ for which the factor of safety of the member is maximum, (b) the corresponding value of the factor of safety. (Hint: Equate the expressions obtained for the factors of safety with respect to the normal and shearing stresses.)

SOLUTION

$$
A_{0}=(2.0)(1.25)=2.50 \mathrm{in}^{2}
$$

At the optimum angle,

$$
(F . S .)_{\sigma}=(F . S .)_{\tau}
$$

Normal stress: $\quad \sigma=\frac{P}{A_{0}} \cos ^{2} \theta \quad \therefore \quad P_{U, \sigma}=\frac{\sigma_{U} A_{0}}{\cos ^{2} \theta}$

$$
(F . S .)_{\sigma}=\frac{P_{U, \sigma}}{P}=\frac{\sigma_{U} A_{0}}{P \cos ^{2} \theta}
$$

Shearing stress: $\tau=\frac{P}{A_{0}} \sin \theta \cos \theta \quad \therefore \quad P_{U, \tau}=\frac{\tau_{U} A_{0}}{\sin \theta \cos \theta}$

$$
(F . S .)_{\tau}=\frac{P_{U, \tau}}{P}=\frac{\tau_{U} A_{0}}{P \sin \theta \cos \theta}
$$

Equating, $\frac{\sigma_{U} A_{0}}{P \cos ^{2} \theta}=\frac{\tau_{U} A_{0}}{P \sin \theta \cos \theta}$
Solving, $\quad \frac{\sin \theta}{\cos \theta}=\tan \theta=\frac{\tau_{U}}{\sigma_{U}}=\frac{1.3}{2.5}=0.520$
(a) $\theta_{\mathrm{opt}}=27.5^{\circ}$
(b) $\quad P_{U}=\frac{\sigma_{U} A_{0}}{\cos ^{2} \theta}=\frac{(12.5)(2.50)}{\cos ^{2} 27.5^{\circ}}=7.94 \mathrm{kips}$

$$
F . S .=\frac{P_{U}}{P}=\frac{7.94}{2.4}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.70

The two portions of member $A B$ are glued together along a plane forming an angle θ with the horizontal. Knowing that the ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi in shear, determine the range of values of θ for which the factor of safety of the members is at least 3.0.

SOLUTION

$$
\begin{aligned}
A_{0} & =(2.0)(1.25)=2.50 \mathrm{in.}^{2} \\
P & =2.4 \mathrm{kips} \\
P_{U} & =(F . S .) P=7.2 \mathrm{kips}
\end{aligned}
$$

Based on tensile stress,

$$
\begin{gathered}
\sigma_{U}=\frac{P_{U}}{A_{0}} \cos ^{2} \theta \\
\cos ^{2} \theta=\frac{\sigma_{U} A_{0}}{P_{U}}=\frac{(2.5)(2.50)}{7.2}=0.86806 \\
\cos \theta=0.93169 \quad \theta=21.3^{\circ} \quad \theta>21.3^{\circ} \\
\text { Based on shearing stress, } \quad \tau_{U}=\frac{P_{U}}{A_{0}} \sin \theta \cos \theta=\frac{P_{U}}{2 A_{0}} \sin 2 \theta \\
\sin 2 \theta=\frac{2 A_{0} \tau_{U}}{P_{U}}=\frac{(2)(2.50)(1.3)}{7.2}=0.90278 \\
2 \theta=64.52^{\circ} \quad \theta=32.3^{\circ} \quad \theta<32.3^{\circ}
\end{gathered}
$$

Hence, $21.3^{\circ}<\theta<32.3^{\circ}$

Full file at https://TestbankDirect.eu/

SOLUTION

Force in element i :
It is the sum of the forces applied to that element and all lower ones:

$$
F_{i}=\sum_{k=1}^{i} P_{k}
$$

Average stress in element i :

$$
\begin{aligned}
\text { Area } & =A_{i}=\frac{1}{4} \pi d_{i}^{2} \\
\text { Ave. stress } & =\frac{F_{i}}{A_{i}}
\end{aligned}
$$

Program outputs:

Problem 1.1

Element	Stress (MPa)
1	84.883
2	-96.766

Problem 1.3

Element	Stress (ksi)
1	22.635
2	17.927

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

Forces in links.

F.B. diagram of $A B C$:

$$
\begin{aligned}
+\Sigma M_{C} & =0: \quad 2 F_{B D}(B C)-P(A C)=0 \\
F_{B D} & =P(A C) / 2(B C) \quad \text { (tension) } \\
+) \Sigma M_{B} & =0: \quad 2 F_{C E}(B C)-P(A B)=0 \\
F_{C E} & =P(A B) / 2(B C) \quad \text { (comp.) }
\end{aligned}
$$

$$
\text { (i) } \begin{aligned}
& \text { Link } B D . \\
& \\
& \text { Thickness }=t_{L} \\
& A_{B D}=t_{L}\left(w_{L}-d\right) \\
& \\
& \sigma_{B D}=+F_{B D} / A_{B D}
\end{aligned}
$$

(iii) $\underline{\operatorname{Pin} B}$.
$\tau_{B}=F_{B D} /\left(\pi d^{2} / 4\right)$
(v) Bearing stress at B.

Thickness of member $A C=t_{A C}$
Sig Bear $B=F_{B D} /\left(d t_{A C}\right)$
(vi) Bearing stress at C.

Sig Bear $C=F_{C E} /\left(d t_{A C}\right)$
(ii) Link $C E$.

Thickness $=t_{L}$

$$
\begin{aligned}
& A_{C E}=t_{L} w_{L} \\
& \sigma_{C E}=-F_{C E} / A_{C E}
\end{aligned}
$$

(iv) $\underline{\operatorname{Pin} C}$.

$$
\tau_{C}=F_{C E} /\left(\pi d^{2} / 4\right)
$$

Shearing stress in $A B C$ under $\operatorname{Pin} B$.

$$
\begin{aligned}
F_{B} & =\tau_{A C} t_{A C}\left(w_{A C} / 2\right) \\
\Sigma F_{y} & =0: \quad 2 F_{B}=2 F_{B D} \\
\tau_{A C} & =\frac{2 F_{B D}}{\tau_{A C} w_{A C}}
\end{aligned}
$$

Full file at https://TestbankDirect.eu/

PROBLEM 1.C2 (Continued)

Program Outputs

Input data for Parts $(a),(b),(c)$:

$$
\begin{aligned}
P & =20 \mathrm{kN}, \quad A B=0.25 \mathrm{~m}, \quad B C=0.40 \mathrm{~m}, \quad A C=0.65 \mathrm{~m} \\
T L & =8 \mathrm{~mm}, \quad W L=36 \mathrm{~mm}, \quad T A C=10 \mathrm{~mm}, \quad W A C=50 \mathrm{~mm}
\end{aligned}
$$

d	Sigma BD	Sigma CE	Tau B	Tau C	Bear B	SigBear C
10.00	78.13	-21.70	206.90	79.58	325,00	125.00
11.00	81.25	-21.70	170.98	65.77	295.45	113.64
12.00	84.64	-21.70	143.68	55.26	370.83	104.17
13.00	88.32	-21.70	122.43	47.09	25000	96.15
14.00	92.33	-21.70	105.56	40.60	232,14	89.29
15.00	96.73	-21.70	191.96	35.37	216.67	83.33
16.00	101.56	-21.70	80.82	31.08	203.12	78.13 \& (b)
17.00	106.91	-21.70	71.59	27.54	191.18	73.53 (
18.00	112.85	-21.70	63.86	24.56	180.56	69.44
19.00	119.49	-21.70	57.31	22.04	171.05	65.79
20.00	126.95	-21.70	51.73	19.89	162.50	62.50
21.00	135.42	-21.70	46.92	18.04	154.76	59.52
22.00	145.09	-21.70	42.75	16.44	147.73	56.82
23.00	135.25	-21.70	39.11	15.04	141.30	54.35
24.00	16927	-21.70	35.92	13.82	135.42	52.08
25.00	8466	-21.70	33.10	12.73	130.00	50.00
26.00	37	-21.70	30.61	11.77	125.00	48.08
27.00		-21.70	28.38	10.92	120.37	46.30
28.00		-21.70	26.39	10.15	116.07	44.64
29.00	290.1-8'	-21.70	24.60	9.46	112.07	43.10
30.00	1338.54	-21.70	22.99	8.84	108.33	41.67

Check: For $d=22 \mathrm{~mm}$, Tau $A C=65 \mathrm{MPa}<90 \mathrm{MPa}$ O.K.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.C2 (Continued)

Input data for Part (d): $P=20 \mathrm{kN}$,

$$
\begin{aligned}
A B & =0.25 \mathrm{~m}, \quad B C=0.40 \mathrm{~m} \\
A C & =0.65 \mathrm{~m}, \quad T L=8 \mathrm{~mm}, \quad W L=36 \mathrm{~mm} \\
T A C & =8 \mathrm{~mm}, \quad W A C=50 \mathrm{~mm}
\end{aligned}
$$

d	Sigma BD	Sigma CE	Tau B	Tau C	gBear B	gBear
10.00	78.13	-21.70	20690	79.58	406	
11.00	81.25	-21.70	170.89	79.58 65.77	406	156.25
12.00	84.64	-21.70	143.68	55.26		142.05
13.00	88.32	-21.70	12243	47.09		1
14.00	92.33	-21.70	,			120.19
15.00	96.73	-21.70				111.61
16.00	101.56	-21.70				104.17
17.00	106.91	-21.70	71.59			97.66
18.00	112.85	-21.70	63.86	24.56	5	91.91
19.00	119.49	-21.70	57.31	22.04	225.69 213.82	86.81
20.00	126.95	-21.70	51.73	19.89	203.12	
21.00	135.42	-21.70	46.92	18.04	193.45	74.40
22.00	145.09	-21.70	42.75	16.44	184.66	71.02
23.00	136.2,51	-21.70	39.11	15.04	176.63	67.93
24.00	. 27	-21.70	35.92	13.82	169.27	65.10
25.00		-21.70	33.10	12.73	162.50	62.50
26.00		-21.70	30.61	11.77	156.25	60.10
27.00		-21.70	28.38	10.92	150.46	57.87
28.00		-21.70	26.39	10.15	145.09	55.80
29.00	0,18	-21.70	24.60	9.46	140.09	53.88
30.00	3,38,54	-21.70	22.99	8.84	135.42	52.08

(d) Answer: $18 \mathrm{~mm} \leq d \leq 22 \mathrm{~mm}$
(d)

Check: For $d=22 \mathrm{~mm}$, Tau $A C=81.25 \mathrm{MPa}<90 \mathrm{MPa}$ O.K.

Full file at https://TestbankDirect.eu/

SOLUTION

Forces in members $A B$ and $B C$.
Free body: Pin B.

From force triangle:

$$
\begin{aligned}
\frac{F_{A B}}{\sin 45^{\circ}} & =\frac{F_{B C}}{\sin 60^{\circ}}=\frac{2 P}{\sin 75^{\circ}} \\
F_{A B} & =2 P\left(\sin 45^{\circ} / \sin 75^{\circ}\right) \\
F_{B C} & =2 P\left(\sin 60^{\circ} / \sin 75^{\circ}\right)
\end{aligned}
$$

(i) Max. ave. stress in $A B$.

Width $=\omega$
Thickness $=t$
$A_{A B}=(w-d) t$
$\sigma_{A B}=F_{A B} / A_{A B}$
(iii) $\underline{\operatorname{Pin} A}$.
$\tau_{A}=\left(F_{A B} / 2\right) /\left(\pi d^{2} / 4\right)$
(v) Bearing stress at A.

Sig Bear $A=F_{A B} / d t$
(vii) Bearing stress at B in member $B C$.

Sig Bear $B=F_{B C} / 2 d t$
(ii) Ave. stress in $B C$.

$$
\begin{aligned}
A_{B C} & =w t \\
\sigma_{B C} & =F_{B C} / A_{B C}
\end{aligned}
$$

(iv) $\quad \underline{\operatorname{Pin} C}$.

$$
\tau_{C}=\left(F_{B C} / 2\right) /\left(\pi d^{2} / 4\right)
$$

(vi) Bearing stress at C.

Sig Bear $C=F_{B C} / d t$

Full file at https://TestbankDirect.eu/

PROBLEM 1.C3 (Continued)								
Program Outputs								
Input data for Parts (a), (b), (c):								
$P=5 \mathrm{kips}, w=1.8 \mathrm{in} ., t=0.5 \mathrm{in}$.								
$\begin{gathered} D \\ \text { in. } \end{gathered}$	$\underset{\text { ksi }}{\text { SIGAB }}$	SIGBC ksi	TAUA ksi	TAUC S ksi	$\underset{\mathrm{ksi}}{\mathrm{SIGBRGA}}$	$\underset{\substack{\text { SIGBRGC }}}{\text { ksi }}$	SIGBRGB ksi	
0.500	11.262	-9.962	28.642	32.837	29.282	35.863	17.932	
0.550	11.713	-9.962	15400	118.869	26.620	32.603	16.301	
0.600	12.201	-9.962	12.945	15.855	24.402	29.886	14.943	
0.650	12.731	-9.962	11.030	118.512	22.525	27.587	13.793	
0.700	13.310	-9.962	9.511	11.649	20.916	25.616	12.808	
0.750	13.944	-9.962	8.285	10.147	19.521	23. 909	11.954	(b)
0.800	14.641	-9.962	7.282	8.918	18.301	22.414	11.207	- ${ }^{\text {- }}$
0.850	15.412	-9.962	6.450	7.900	17.225	21.096	10.548	
0.900	16.268	-9.962	5.754	7.047	16.268	19.924	9.962	
0.950	17.225	-9.962	5.164	6.324	15.412	18.875	9.438	
1.000	18.301	-9.962	4.660	5.708	14.641	17.932	8.966	
1.050	19.521	-9.962	4.227	5.177	13.944	17.078	8.539	
1.100	20.916	-9.962	3.852	4.717	13.310	16.301	8.151	
1.150	22.828	-9.962	3.524	4.316	12.731	15.593	7.796	
1.200	24.402	-9.962	3.236	3.964	12.201	14.943	7.471	
1.250	126.628	-9.962	2.983	3.653	11.713	14.345	7.173	
1.300	129.232	-9.962	2.758	3.377	11.262	13.793	6.897	
1.350	152.838	-9.962	2.557	3.132	10.845	13.283	6.641	
1.400	30.803	-9.962	2.378	2.912	10.458	12.808	6.404	
1.450	42.851	-9.962	2.217	2.715	10.097	12.367	6.183	
1.500	48.803.	-9.962	2.071	2.537	9.761	11.954	5.977	
(c) Answer: 0.70 in. $\leq d \leq 1.10$ in. 4 (c)								

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

(a) Draw F.B. diagram of $A B C$:

$$
\begin{aligned}
+\Sigma \Sigma M_{C}=0: \quad & (P \sin \alpha)(1.5 \mathrm{in} .)+(P \cos \alpha)(30 \mathrm{in.}) \\
& \quad-(F \cos \beta)(15 \mathrm{in} .)-(F \sin \beta)(12 \mathrm{in} .)=0 \\
F= & P \frac{15 \sin \alpha+30 \cos \alpha}{15 \cos \beta+12 \sin \beta} \\
F . S .= & F_{\mathrm{ult}} / F
\end{aligned}
$$

Output for $P=4 \mathrm{kips}$ and $F_{\mathrm{ult}}=20 \mathrm{kips}:$

VALUES OF FS
BETA

	0	5.71	11.31	16.70	21.80	26.56	30.96	34.99	66	41.99	5.00
ALPHA											
0.000	3.125	3.358	3.555	3.712	3.830	3.913	3.966	3.994	4.002	3.995	3.977
5.711	2.991	3.214	3.402	3.552	3.666	3.745	3.796	3.823	3.830	3.824	3.807
11.310	2.897	3.113	3.295	3.441	3.551	3.628	3.677	3.703	3.710	3.704	3.687
16.699	2.837	3.049	3.227	3.370	3.477	3.553	3.600	3.626	3.633	3.627	3.611
21.801	2.805	3.014	3.190	3.331	3.438	3.512	3.560	3.585	3.592	3.586	3.570
26.565	2.795	3.004	3.179	3.320	3.426	3.500	3.547	3.572	3.579	3.573	3.558
30.964	2.803	3.013	3.189	3.330	3.436	3.510	3.558	3.583	3.590	3.584	3.568
34.992	2.826	3.036	3.214	3.356	3.463	3.538	3.586	3.611	3.619	3.612	3.596
38.660	2.859	3.072	3.252	3.395	3.503	3.579	3.628	3.653	3.661	3.655	3.638
41.987	2.899	3.116	3.298	3.444	3.554	3.631	3.680	3.706	3.713	3.707	3.690
45.000	2.946	3.166	3.351	3.499	3.611	3.689	3.739	3.765	3.773	3.767	3.750
									\uparrow		

(b) When $\beta=38.66^{\circ}, \tan \beta=0.8$ and cable $B D$ is perpendicular to the lever arm $B C$.
(c) $\quad F . S .=3.579$ for $\alpha=26.6^{\circ} ; P$ is perpendicular to the lever arm $A C$.

Note: The value $F . S .=3.579$ is the smallest of the values of $F . S$. corresponding to $\beta=38.66^{\circ}$ and the largest of those corresponding to $\alpha=26.6^{\circ}$. The point $\alpha=26.6^{\circ}, \beta=38.66^{\circ}$ is a "saddle point," or "minimax" of the function F.S. (α, β).

Full file at https://TestbankDirect.eu/

PROBLEM 1.C5

A load \mathbf{P} is supported as shown by two wooden members of uniform rectangular cross section that are joined by a simple glued scarf splice. (a) Denoting by σ_{U} and τ_{U}, respectively, the ultimate strength of the joint in tension and in shear, write a computer program which, for given values of a, b, P, σ_{U} and τ_{U}, expressed in either SI or U.S. customary units, and for values of α from 5 to 85° at 5° intervals, can be used to calculate (i) the normal stress in the joint, (ii) the shearing stress in the joint, (iii) the factor of safety relative to failure in tension, (iv) the factor of safety relative to failure in shear, and (v) the overall factor of safety for the glued joint. (b) Apply this program, using the dimensions and loading of the members of Probs. 1.29 and 1.31, knowing that $\sigma_{U}=150 \mathrm{psi}$ and $\tau_{U}=214 \mathrm{psi}$ for the glue used in Prob. 1.29, and that $\sigma_{U}=1.26 \mathrm{MPa}$ and $\tau_{U}=1.50 \mathrm{MPa}$ for the glue used in Prob. 1.31. (c) Verify in each of these two cases that the shearing stress is maximum for $a=45^{\circ}$.

SOLUTION

(i) and (ii) Draw the F.B. diagram of lower member:

$$
\begin{array}{rrl}
V^{+} \Sigma F_{x}=0: & -V+P \cos \alpha=0 & V=P \cos \alpha \\
+\not \subset F_{y}=0: & F-P \sin \alpha=0 & F=P \sin \alpha
\end{array}
$$

Area $=a b / \sin \alpha$

Normal stress:

$$
\sigma=\frac{F}{\text { Area }}=(P / a b) \sin ^{2} \alpha
$$

Shearing stress:

$$
\tau=\frac{V}{\text { Area }}=(P / a b) \sin \alpha \cos \alpha
$$

(iii) F.S. for tension (normal stresses):

$$
F S N=\sigma_{U} / \sigma
$$

(iv) F.S. for shear:

$$
F S S=\tau_{U} / \tau
$$

(v) Overall F.S.:
$F . S .=$ The smaller of $F S N$ and FSS.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

PROBLEM 1.C5 (Continued)

Program Outputs

Problem 1.29

$$
\begin{aligned}
a & =150 \mathrm{~mm} \\
b & =75 \mathrm{~mm} \\
P & =11 \mathrm{kN} \\
\sigma_{U} & =1.26 \mathrm{MPa} \\
\tau_{U} & =1.50 \mathrm{MPa}
\end{aligned}
$$

ALPHA	SIG (MPa)	TAU (MPa)	FSN	FSS	FS
5	0.007	0.085	169.644	17.669	17.669
10	0.029	0.167	42.736	8.971	8.971
15	0.065	0.244	19.237	6.136	6.136
20	0.114	0.314	11.016	4.773	4.773
25	0.175	0.375	7.215	4.005	4.005
30	0.244	0.423	5.155	3.543	3.543
35	0.322	0.459	3.917	3.265	3.265
40	0.404	0.481	3.119	3.116	3.116
45	0.489	0.489	2.577	3.068	2.577
50	0.574	0.481	2.196	3.116	2.196
55	0.656	0.459	1.920	3.265	1.920
60	0.733	0.423	1.718	3.543	1.718
65	0.803	0.375	1.569	4.005	1.569
70	0.863	0.314	1.459	4.773	1.459
75	0.912	0.244	1.381	6.136	1.381
80	0.948	0.167	1.329	8.971	1.329
85	0.970	0.085	1.298	17.669	1.298

Full file at https://TestbankDirect.eu/

PROBLEM 1.C5 (Continued)

Problem 1.31

$$
\begin{aligned}
a & =5 \mathrm{in} . \\
b & =3 \mathrm{in.} \\
P & =1400 \mathrm{lb} \\
\sigma_{U} & =150 \mathrm{psi} \\
\tau_{U} & =214 \mathrm{psi}
\end{aligned}
$$

ALPHA	SIG (psi)	TAU (psi)	FSN	FSS	FS	
5	0.709	8.104	211.574	26.408	26.408	
10	2.814	15.961	53.298	13.408	13.408	
15	6.252	23.333	23.992	9.171	9.171	
20	10.918	29.997	13.739	7.134	7.134	
25	16.670	35.749	8.998	5.986	5.986	
30	23.333	40.415	6.429	5.295	5.295	
35	30.706	43.852	4.885	4.880	4.880	
40	38.563	45.958	3.890	4.656	3.890	
45	46.667	46.667	3.214	4.586	3.214	$\boldsymbol{4}$ (c)
50	54.770	45.958	2.739	4.656	2.739	
55	62.628	43.852	2.395	4.880	2.395	
60	70.000	40.415	2.143	5.295	2.143	4 (b)
65	76.663	35.749	1.957	5.986	1.957	
70	82.415	29.997	1.820	7.134	1.820	
75	87.081	23.333	1.723	9.171	1.723	
80	90.519	15.961	1.657	13.408	1.657	
85	92.624	8.104	1.619	26.408	1.619	

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Full file at https://TestbankDirect.eu/

SOLUTION

(a) F.B. diagram of $A B C$:

$$
\begin{array}{ll}
\Sigma M_{A}=0: & P=\frac{200}{380} F_{B D} \\
\Sigma M_{B}=0: & P=\frac{200}{180} F_{A}
\end{array}
$$

(i) For given d_{1} of $\operatorname{Pin} A$:

$$
F_{A}=2\left(\tau_{U} / F S\right)\left(\pi d_{1}^{2} / 4\right), \quad \quad P_{1}=\frac{200}{180} F_{A}
$$

(ii) For given d_{2} of Pins B and $D: \quad F_{B D}=2\left(\tau_{U} / F S\right)\left(\pi d_{2}^{2} / 4\right), \quad P_{2}=\frac{200}{380} F_{B D}$
(iii) For ultimate stress in links $B D: \quad F_{B D}=2\left(\sigma_{U} / F S\right)(0.02)(0.008), \quad P_{3}=\frac{200}{380} F_{B D}$
(iv) For ultimate shearing stress in pins: P_{4} is the smaller of P_{1} and P_{2}.
(v) For desired overall F.S.: $\quad P_{5}$ is the smaller of P_{3} and P_{4}.

If $P_{3}<P_{4}$, stress is critical in links.
If $P_{4}<P_{3}$ and $P_{1}<P_{2}$, stress is critical in $\operatorname{Pin} A$.
If $P_{4}<P_{3}$ and $P_{2}<P_{1}$, stress is critical in Pins B and D.

Full file at https://TestbankDirect.eu/

PROBLEM 1.C6 (Continued)

Program Outputs

(b) Problem 1.55. Data: $d_{1}=8 \mathrm{~mm}, \quad d_{2}=12 \mathrm{~mm}, \quad \sigma_{U},=250 \mathrm{MPa}, \tau_{U}=100 \mathrm{MPa}, \quad F . S .=3.0$ $P_{\text {all }}=3.72 \mathrm{kN}$. Stress in Pin A is critical.
(c) Problem 1.56. Data: $d_{1}=10 \mathrm{~mm}, \quad d_{2}=12 \mathrm{~mm}, \quad \sigma_{U}=250 \mathrm{MPa}, \tau_{U}=100 \mathrm{MPa}, \quad F . S .=3.0$
$P_{\text {all }}=3.97 \mathrm{kN}$. Stress in Pins B and D is critical.
(d) Data:
$d_{1}=d_{2}=15 \mathrm{~mm}, \quad \sigma_{U}=110 \mathrm{MPa}, \quad \tau_{U}=100 \mathrm{MPa}, \quad F . S .=3.2$
$P_{\text {all }}=5.79 \mathrm{kN}$. Stress in links is critical.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

